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Abstract

Circadian rhythmicity in gene expression and physiological process has been observed both in the central
nervous system and in the periphery, including the hippocampus. As a center for memory formation and storage, the
hippocampus shows circadian rhythmicity in clock gene expression and synaptic plasticity. Circadian variation in
performance of hippocampus-dependent memory task suggests a link between clock gene oscillation and
behavioral response. Yet the discrepancy in time scale between fast information encoding during memory
acquisition and much slower circadian oscillation in cellular processes casts doubt on the underlying mechanism of
circadian regulation of learning and memory. This short review suggests that instead of being a modulator of
learning process and memory formation, the time-of-day information itself could be integrated as a component of
episodic memory for later consolidation and retrieval.
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Introduction
Circadian rhythms are basic biological phenomena conserved in a

variety of organisms. Endogenous circadian oscillators modulate a
range of physiological and behavioral activities observed throughout
phylogeny. Animals need intact learning ability and well-maintained
memory to survive varying environmental conditions. However, the
relationship between circadian rhythm biology and memory formation
is far from well understood. This short review first summarizes the
basic organization and functionality of circadian machineries in the
central nervous system and in the periphery. It then reviews current
knowledge about circadian modulation of learning and memory.
Finally, it raises the question: Is circadian rhythmicity a modulator of
learning and memory, or it is a component integrated into episodic
memory during learning? I suggest that the time-of-day information
could be encoded as a component of episodic memory rather than
being an active modulator of learning and memory.

Circadian clocks exist in the central nerve system and in the
periphery

Circadian rhythms are biological activities that oscillate under
constant environmental conditions with a ~24 hour period. Circadian
rhythms regulate the biological processes of diverse organisms ranging
from prokaryotes to mammals [1-4]. Patterns of brain activity,
hormone production, cell regeneration and many other biological
activities are linked to this 24-hour cycle [5-7]. Circadian rhythms are
endogenously driven: organisms maintain their behavioral and
physiological rhythms even under constant environmental conditions.

In mammals, the master circadian center is located in the
suprachiasmatic nucleus (SCN) of the hypothalamus [8,9]. In
individual SCN cells, circadian machinery is self-sustained and
maintained by a cellular feedback loop. In the positive feedback phase,

two transcription activators, CLOCK and BMAL1, dimerize and bind
to E-box motifs in promoter segments and stimulates transcription of
clock genes [1,10]. In the negative feedback phase, two clock gene (Per
and Cry) products, Period and Cryptochrome proteins, form a
heterodimer complex and inhibit CLOCK:BMAL1-mediated
transcription through direct protein–protein interaction [11]. This
inhibition down-regulates the transcription of clock genes including
their own. The ensuing decline in Period and Cryptochrome protein
levels eventually leads to reactivation of CLOCK/BMAL1-induced
clock gene transcription and reinitiation of the cycle. Individually
oscillating SCN cells use neuropeptide communication (primarily
vasoactive intestinal peptide (VIP) [12-14]) and gap junctions [15,16]
to promote synchronization and coordination among them.

Rhythmic clock gene expression underlies the rhythmic electrical
activity, such as spontaneous firing rate, of SCN neurons [17,19]. In
nocturnal rodents, spontaneous firing rate of SCN neurons show
circadian rhythmicity with an elevated firing rate in subjective daytime
[20-22]. It is possible that there is direct transcriptional regulation of
ion channel proteins or regulatory factors affecting channel activity by
CLOCK/BMAL1. Clock genes may also regulate electrical activity
indirectly via clock controlled genes (CCGs), such as vasopressin,
which appears to augment the magnitude of the electrical activity
rhythm in the SCN through a receptor-mediated excitation of SCN
neurons [23,24].

The SCN outputs are thought to synchronize a number of circadian
oscillators in the periphery, such as lungs [25], pancreas [26,27],
adipose tissue [28], adrenal glands [29,30] and ovaries [31,32].
Furthermore, independent circadian oscillators exist in the periphery,
including the food-entrainable oscillator in the liver [33-35] and
oscillator in the olfactory bulb [36,37].

Circadian fluctuations in clock gene expression and synaptic
plasticity exist in the hippocampus
The hippocampus is a region in the brain critical for learning and

memory formation. Interestingly, some clock genes are expressed in
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the hippocampus and their expressions oscillate in a robust circadian
manner. For instance, the Per1 and Per2 genes are reported to oscillate
in both the dentate gyrus and CA1 regions of the hippocampus [38];
the oscillation of the latter in the dentate gyrus can be abolished by
lesion of the SCN [39]. In addition to circadian fluctuations in gene
expressions at the cellular level, time-dependent synaptic
strengthening has been observed in rodent SCN. Stimulation of the
optic nerve elicited long-term potentiation (LTP) only during the day
[40]. This time-dependent LTP finds its parallel in the hippocampus. In
both hamsters and mice, LTP was elevated in slices containing
hippocampal CA1 prepared during light phase but tested during dark
phase [41,42]. Conversely, in hippocampal slices prepared during dark
phase but tested during light phase, LTP exhibited opposing activities
[42]. These data raise the possibility that hippocampal LTP is
dependent on the time of testing; they also support the hypothesis that
an independent circadian center controls the hippocampal plasticity
since the possible association between the SCN and the hippocampus
was abolished in vitro.

Circadian modulation of learning and memory
The influence of circadian rhythm on learning and memory has

long been studied. Circadian effects on different stages of memory
formation have been postulated in various paradigms [43,44].
Chaudhury and Colwell showed that recall of contextual and cued fear
memory in mice peaks in the early daytime [45]. They also showed
that mice displayed the same periodicity of peak memory when
housed under constant darkness condition and this peak memory is
independent of the time of training. In contrast, other studies suggest
that memory formation is dependent upon time of training [46-49].
Rats demonstrate better acquisition and performance on an operant
task when trained during the dark phase. Spatial learning ability
assessed by Morris water maze was not affected by the time of training;
but better long term spatial memory was achieved if animals were
originally trained during the dark phase [47]. These studies indicate
that the time of training, rather than an endogenous circadian system,
appears to be the critical factor for memory formation.

Given that some clock genes have been found in hippocampus, it is
natural to ask whether the circadian regulation of learning and
memory formation are attributed to hippocampus-specific clock gene
fluctuation; or one might think that circadian machineries may exert
their functions through other neuronal processes and, therefore, affect
learning and memory indirectly. Most manipulations of the circadian
clock also lead to sleep disruption, which is a major cause of learning
deficits and memory dysfunctions. As a result, the cellular mechanisms
of circadian regulation of learning and memory remain vague. Using a
non-invasive means in Siberian hamsters, Ruby et al. recently showed
that circadian system is involved in memory function independent of
sleep [50].

It is worth noting that the presence of clock genes in the
hippocampus does not necessitate them for hippocampus-dependent
learning and memory. To elucidate the link between circadian clock
and hippocampus-dependent learning and memory, region-specific
alterations of circadian clock machinery in the hippocampus would be
necessary. Rather than the coarse ablation of the SCN area, spatially
restricted manipulations of clock genes in subregions of the
hippocampus would allow us to determine whether disruptions of
circadian clock affect learning and memory at cellular as well as
behavioral level. With the advent of novel biotechnologies, including
cell type-specific genetic manipulation and optogenetics [51,52],

questions such as which group of cells that express clock genes
undergo activation after learning can be addressed.

Mechanisms underlying circadian regulation of learning and
memory
The aforementioned evidence along with other experimental results

point to the notion that different stages of memory formation along
with their cellular substrates are under the modulation of circadian
rhythms. However, whether the time-dependent LTP observed in
hippocampus and/or the circadian modulated memory formations are
SCN-dependent are questions to which answers remains largely
elusive. Anatomically, the SCN has connections with many brain
regions [53-55]. Of particular interest is its projections to the
hippocampus, both directly [55] and indirectly via the locus coeruleus
[56], which in turn mediates hippocampal activation [57]. Whether
these connections are responsible for the circadian expressions of clock
genes in hippocampus, or hippocampal synaptic plasticity is not
known. Since the LTP has been thought the cellular basis of long-term
memory formation [58,59], it would be premature to propose that
hippocampus-dependent learning and memory is modulated by the
SCN pacemakers until it can be confirmed that disruptions of SCN-
hippocampus connection lead to memory dysfunctions.

The circadian clock could regulate learning and memory through
hormonal signalling. For instance, melatonin administration inhibits
LTP in the hippocampus [60,61]. In rats, melatonin modulates
memory in a phase-specific manner [62]. Genetic deletions of
melatonin receptors in mice lead to enhanced cognitive performance
[63]. Glucocorticoid is another hormone that has been shown to exert
rhythmic regulation of neuronal plasticity. High glucocorticoid levels
increase learning-induced spine formation, while low glucocorticoid
levels do not [64]. Meanwhile, prolonged exposure to high
glucocorticoid levels disrupts previous memories and eliminates new
spines induced by learning [64].

But is the link between hormones and learning and memory direct?
Or do hormones regulate learning and memory indirectly via affecting
neuronal plasticity in general? Most learning processes take place at a
time scale much smaller than 24-h period, rendering the former
possibility less likely. Recent findings of time cells in hippocampus
[65,66] suggest that a subset of hippocampal cells can keep track of
temporal elapses independent of pacemaker cells in the SCN. During
the acquisition phase, the time-of-day information could be encoded
as a contextual component, therefore becoming a time "tag" of episodic
memory. This would ensure that during later test phases, animals
demonstrate significantly better memory performance at the same
time of training [67,68]. This encoding process can be SCN-
independent so that animals with lesioned SCN demonstrate similar
performance in memory tasks as their wild-type counterparts [69].

Conclusion
Circadian rhythmicity in cell physiology is conserved across a wide

variety of organisms. The presence of circadian variations in gene
expression and synaptic plasticity in hippocampal cells, as well as in
learning and memory formation, indicates an inherent link between
cellular activities and behaviors of the whole animal. However, the
mechanism by which the activity of a group of pacemaker cells is
translated into behavioral responses is still poorly understood.
Anatomical and physiological evidence summarized above and many
other studies indicate that pacemaker cells in the SCN may modulate
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circadian variations in learning and memory formation directly and/or
indirectly. However, contemporary theories of memory consolidation
suggest that newly-acquired episodic memories are replayed during
ripples for consolidation at tens of millisecond time scale, both
immediately after learning and remotely during sleep [70-72]. How
could cellular processes oscillating at ~24 h cycles influence the
memory encoding at such finer time scales? It is more plausible that
during learning, the time-of-day information is embedded as a
component of episodic memory which is consolidated along with other
memory components during subsequent replays. This time “tag” of
episodic memory could be encoded independent of the SCN or local
circadian center in the hippocampus. However, the elucidation of the
relationship between circadian rhythms and memory formation
warrants further research.
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