What’s in Your Yogurt? A Proteomic Investigation
Rose C Gooding*, Johnathan Yeaton*, Frances Wallace*, Erin McTarnaghan*, Armand G Ngounou Wethe, Izabela Sokolowska and Costel C Darie*
Department of Chemistry & Biomolecular Science, Biochemistry & Proteomics Group, Clarkson University, USA
*These authors contributed equally

Abstract
Different kinds of yogurt contain different percentages of proteins. However, do they also contain different types of proteins? To answer to this question, we investigated the protein pattern in the soluble fraction of various yogurts. We found that many yogurts contain mostly two main bands: a ~20 kDa band and a ~15 kDa band. Proteomics analysis of these two bands led us to conclude that the 20 kDa band corresponds to lactoglobulin isofoms and the 15 kDa band corresponds to casein isofoms.

Keywords: Mass spectrometry; Proteomics; Proteins

Introduction
Different kinds of yogurt possess different percentages of protein. According to their label, most varieties of Greek yogurts contain between 18 g and 14 g of protein, which is about 34% of an adults daily intake. Chobani, a widely known brand of Greek yogurt, states that there are 5 active cultures in their yogurt, and that their straining process is the reason behind the high protein concentration. Low fat yogurt, such as the brand Lite and Fit, is another example of a Greek yogurt, but the manufacturer claims to have a lower percentage of proteins, containing a mere 5 g per serving. With less active cultures and fortified with mostly artificial sweeteners, most low fat yogurts lack natural benefits that would allow for a higher protein concentration. Another example of a variety of Greek yogurt with a low protein concentration is organic yogurt. Free of artificial flavoring and bioengineered products, Stonyfield organic yogurt contains 6 grams of proteins per serving. There are also yogurts marketed to aid in digestion. Activia, which differs from its other Greek yogurt counterparts due to the fact that it is high in fiber and manufacturers claim that Activa only contains about 5 g of proteins per serving. Soybeans byproducts can also be used to create yogurt as a non-dairy alternative. Yogurt containing soybean products are lower in protein than their milk containing counterparts due to a process that strips soybeans of their essential nutrients. All these servings indicate the amount of protein per serving. 

Materials
Equal volumes of different yogurts (6 cm³) were intensely vortexed and then centrifuged at 14,000 rpm for 10 minutes at 4°C three times. The supernatant was then buffer exchanged and then transferred to labeled, capped test tubes, and then stored in refrigerator at 4°C. Each yogurt supernatant was then separated by SDS-PAGE according to published procedures [10-13]. The raw data were processed using Protein Lynx Global Server (PLGS, version 2.4) and the resulting pkf files were submitted to Mascot database search [13-19].

Results and Discussion
We investigated the most abundant, soluble proteins in a variety of yogurts. Surprisingly, we did not see to many soluble proteins in these yogurts. An SDS-PAGE that shows the protein pattern of these various yogurts is shown in Figure 1. As observed, two main bands can be observed in the SDS-PAGE of these yogurts: a ~20 kDa band and a ~13 kDa band (yogurt samples Y1-Y8). It should be noted that the samples Y1-Y3 (Figure 1A) and samples Y4-Y8 (Figure 1B) were

Figure 1: Coomassie-stained SDS-PAGE gels of various types of yogurts. Note that samples Y1-Y3 (A) and samples Y4-Y8 (B) were analyzed by two different teams, at two years interval (2012 (A) and 2010 (B).
analyzed by two different teams at two years interval (samples Y1-3 were analyzed in 2012, while samples Y4-8 were analyzed in 2010). Occasionally, a 34 kDa band could also be observed (Figure 1B, Y6-Y8). To reveal the identity of these proteins, proteomics was employed using the two gel bands, which were excised, digested with trypsin and analyzed using nanoLC-MS/MS. A database search revealed two types of proteins: lactoglobulins (alpha and beta lactoglobulins) and caseins (alpha-S1 and kappa caseins). The molecular mass of lactoglobulins is consistent with the ~20 kDa protein band, while the molecular mass of the caseins is consistent with the ~14 kDa band. The Total Ion Chromatogram (TIC) and the mass (MS) and tandem mass (MS/MS) spectra whose analysis led to identification of a peptide that is part of Beta-lactoglobulin are shown in Figure 2. The MS/MS spectra whose analysis led to identification of peptides that were part of Alpha-lactoglobulin and Alpha-S1-Casein are shown in Figure 3.

Conclusion

In conclusion, we interrogated the soluble fraction of the yogurts by SDS-PAGE to determine the protein pattern and the main protein bands that were observed in the Coomassie-stained SDS-PAGE gels were further analyzed by nanoLC-MS/MS. The results are consistent with the mass of the proteins identified by nanoLC-MS/MS (lactoglobulins and caseins) and with milk as the source of the proteins in yogurts.

Figure 2: NanoLC-MS/MS analysis of the 20 kDa band observed in the SDS-PAGE shown in Figure 1. In the total ion chromatogram (TIC, top), at minute 25, a series of multiply charged ions eluted and were recorded by the mass spectrometer as TOF-MS, shown in the middle panel. Here a triply charged peak (circled and also shown in the inbox) with mass-to-charge ratio (m/z) of 771.95 was selected for fragmentation by MS/MS, shown in the lower panel. The fragmentation of this peak produced a series of peaks that correspond to a series of a, b and y ions, whose analysis led to identification of a peptide with the amino acid sequence VYVEELKPTPEGDLEILLQK, which is part of Beta-lactoglobulin.

Figure 3: MS/MS spectra of peptide mixtures that were part of the 20 kDa band (A) and 14 kDa band (B) in the SDS-PAGE gels shown in Figure 1. Data analysis of these MS/MS spectra led to identification of peptides with the amino acid sequences ILDKGINYWLAKH (A) and YLGYLEQLLR (B) which were part of Alpha-lactoglobulin (A) and Alpha-S1-Casein, respectively. In A, the top MS/MS spectrum is unprocessed spectrum and the bottom spectrum is the deconvoluted spectrum shown in the top. Deconvolution processes the multiply charged peaks into singly charged peaks, for an easier data analysis. For example, the peak in the top with m/z of 723.01 is double charged and upon deconvolution, it becomes a singly charged peak with m/z of 1443.99 in the spectrum from the bottom. The same explanation applied to the spectra shown in (B).

Acknowledgement

This work was in part supported by the Department of Chemistry & Biomolecular Science and by the Biochemistry & Proteomics Group at Clarkson University and by the current chairman of the department, Dr. Phillip Christiansen. We thank Dr. Alisa Woods for comments on the manuscript.

References