Worsening Muscle Weakness in Myasthenia Gravis Patient Suffering Dengue Infection

Hardjo Lugito NP1,2, Margaret1, Andree Kurniawan1 and Merlyn Tjiang1
1Internal Medicine Department, Faculty of Medicine, Pelita Harapan University, Indonesia
2Siloam Karawaci General Hospital, Indonesia

Corresponding author: Nata Pratama Hardjo Lugito, Internal Medicine Department, Faculty of Medicine, Pelita Harapan University, Indonesia, Tel: 622154210130; E-mail: nata_pratama_hi@yahoo.com, nata.lugito@uph.edu

Rec date: Apr 10, 2014; Acc date: May 24, 2014; Pub date: May 27, 2014

Abstract

The dengue infection is the second most common mosquito-borne disease affecting human beings. Dengue can manifest with a wide range of neurological features, which have been noted - depending on the clinical setting in 0.5-21% of patients with dengue admitted to hospital. Neuromuscular complication can manifest in muscle weakness, which can be found in forms of myalgia, myositis to rhabdomyolysis, Guillain – Barre syndrome and hypokalemia. The pathogenesis and also the role of host and virus in dengue neuromuscular complications were not clear. In this case report, a 36 year-old female MG patient suffered from dengue infection. The MG symptoms worsen and then improved along with the course of dengue. There was a possibility that muscle weakness in this patient were related to dengue disease as the symptoms improved along with the resolving dengue, but the mechanism could be associated with virus neurotropic effect, systemic infection effect or immune mediated.

Keywords: Dengue; Myasthenia gravis; Muscle weakness

Introduction

Dengue is a mosquito-borne viral disease caused by one of four closely related Dengue Virus (DENV) serotypes. It is the second most common mosquito-borne disease affecting human beings after malaria. Around 4 billion people are at risk of the disease, with about 100 million cases of symptomatic dengue occurring annually [1]. In United Kingdom, the prevalence of Myasthenia Gravis (MG) is 15 per 100,000 population [2]. Since the end of the 1990s, evidence of DENV neurotropism has increased [3,4]. Dengue infection can cause neuromuscular complication which can manifest as muscle weakness. Muscle weakness can be found in forms of myalgia, myositis to rhabdomyolysis [5], Guillain-Barre syndrome [6,7] and hypokalemia [8,9].

Pathogenesis of neuromuscular complications and role of host and virus are not clear, and might be associated with virus neurotropic effect, systemic infection effect or immune mediated such as in Guillain – Barre syndrome in dengue infection. In MG, an autoimmune disease affecting the neuromuscular junction, anti – acetylcholine receptor (AChR) antibodies caused lysis – mediated by complement, cross – link, decreased production and direct agonist inhibition of AChR [9]. In this case report, a 36 year-old female MG patient, whose symptoms worsen when she suffered from dengue infection. The MG symptoms improved along with resolving dengue infection. There was a possibility that muscle weakness in this patient were related to dengue disease as the symptoms improved along with the resolving dengue, but the mechanism was not clear.

Case Illustration

Female, 36 year-old was admitted with fever since 4 days prior. The fever was continuously high with no chill. She also complained of arthralgia, headache and extremity muscle weakness. There was no epistaxis or gum bleeding. She complained of difficulty in swallowing food and liquid, difficulty to open eyelids and increasing difficulty to breathe since prior 2 weeks. She did not have history of asthma. Neurological examination found extremity motor strength of 44/44 on four extremities, decreased physiological reflexes, 5th and 10th cranial nerve palsy, and ptosis.

She had experienced same complains 8 month ago when she was diagnosed of MG. Her chest computed tomography scan then was normal. She was on pyridostigmine 60 mg three times daily since 8 month ago. Her laboratory examination revealed thrombocytopenia (93,000 /µL), positive dengue IgG and IgM using Panbio® Dengue IgG IgM Capture ELISA. She received fluid therapy and pyridostigmine 60 mg four times daily. Her complaints (ptosis, cranial nerves palsy and extremity motor strength) and laboratory improved, then she was discharged on the 6th day of admission.

Discussion

MG is an acquired autoimmune disease affecting the neuromuscular junction, especially the nicotinic AChR which located on the post synaptic endplate membrane. Acetylcholine produced and released normally, but the post synaptic effect decreased due to decreased AChR, which its membrane is occupied by antibodies and complement. Anti-AChR antibodies causing the decreased AChR by lysis-mediated by complement, cross-link, decreased production and direct agonist inhibition [9] (Table 1).
Dengue has an incubation period of 4-7 days (range 3-14 days) [1]. The specific muscle weakness, more on proximal than generalized weakness, more on distal muscle weakness that is less in the morning then more in the evening, progressive on exertion and improved with rest [5]. Worsening of MG symptoms are influenced by many factors including emotional distress, systemic diseases (primarily virus respiratory infection), hypothyroidism or hyperthyroidism, pregnancy, menstrual cycle, fever and medication that influenced neuromuscular transmission [9].

This patient experienced extremity muscle weakness, difficulty in swallowing food and liquid, difficulty in opening eyelids and increasing difficulty breathing 8 months ago. She was diagnosed of MG and her symptoms improved by pyridostigmine therapy 60 mg three times daily. Her symptoms repeated 2 weeks ago and worsen 4 days ago, when she was diagnosed with dengue fever. Her symptoms 2 weeks ago were similar to symptoms 8 month ago, with muscle weakness more on specific muscle than generalized weakness, weakness that is less in the morning then more in the evening, progressive on exertion and improved with rest; symptoms of MG.

Dengue infection can cause neuromuscular complications, which pathogenesis comprised of 3 categories, i.e. complications caused by DENV neurotropic nature, complications associated with systemic complications of dengue infection and post dengue infection complications. Pathogenesis of neuromuscular complications and role of host and virus are not clear, and might be associated with virus neurotropic effect, systemic infection effect and immune mediated [5].

Neuromuscular complications of dengue infection can manifest in muscle weakness. Muscle weakness in dengue infection can be found in forms of myalgia, myositis that can caused rhabdomyolysis [5], Guillain – Barre syndrome [6,7] and hypokalemia [8,9]. Guillain – Barre syndrome in dengue infection caused an immune response that cross react with peripheral nerve components due to cross-reactive epitopes. The immune response can occur in myelin or peripheral nerve axon. Hypokalemia mechanism in dengue infection might be caused by potassium redistribution into cells or transient kidney tubules abnormalities that excreted potassium into urine [8].

No myalgia or myositis symptoms such as muscleache, or hypokalemia were found in this patient. A possible cause of muscle weakness in this patient was due to Guillain – Barre syndrome or worsening of MG symptoms that were influenced by systemic diseases in this case dengue infection. No further examinations such as level of AChR, dengue serotype, or cytokine level (interleukin, interferon, tumor necrotizing factor) were done. Although this could not be confirmed, there was possibility that muscle weakness in this patient were related to dengue infection as the symptoms improved along with the resolving dengue infection.

Table 1: Symptoms, physical examinations and laboratory results of the patient

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Plosis</td>
<td>* / +</td>
<td>- / +</td>
<td>- / -</td>
<td>- / -</td>
<td>- / -</td>
</tr>
<tr>
<td>Cranial nerves palsy</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Extremity motor strength</td>
<td>4444</td>
<td>4444</td>
<td>5555</td>
<td>5555</td>
<td>5555</td>
</tr>
<tr>
<td>Hemoglobin</td>
<td>13.80</td>
<td>12.30</td>
<td>12.60</td>
<td>12.50</td>
<td>12.90</td>
</tr>
<tr>
<td>Hematocrit</td>
<td>39.30</td>
<td>36.10</td>
<td>37.40</td>
<td>35.70</td>
<td>37.20</td>
</tr>
<tr>
<td>Leucocyte</td>
<td>3,000</td>
<td>3,200</td>
<td>4,400</td>
<td>5,000</td>
<td>5,200</td>
</tr>
<tr>
<td>Platelet</td>
<td>93,000</td>
<td>62,000</td>
<td>89,000</td>
<td>116,000</td>
<td>168,000</td>
</tr>
</tbody>
</table>

References