Yang-Mills Mass Gap Clay Institute Problem Solution

Cusack P*
Independent Researcher, Canada

Abstract
Here is the solution to the Yang-Mills Mass Gap Problem as described below. The Mass in the material universe is a balance between the resistance to mass formation ($cuz=\pi$-base e), squeezing Energy, and Gravity pulling it apart. There is an explanation as to why there are 116 sable elements in the material universe. The calculations are verified by predicting the size of the universe within experimental error.

Keywords: Quantum physics; Elementary particle theory; Yang-Mills theory

Introduction
The laws of quantum physics stand to the world of elementary particles in the way that Newton’s laws of classical mechanics stand to the macroscopic world. Almost half a century ago, Yang and Mills introduced a remarkable new framework to describe elementary particles using structures that also occur in geometry. Quantum Yang-Mills theory is now the foundation of most of elementary particle theory, and its predictions have been tested at many experimental laboratories, but its mathematical foundation is still unclear. The successful use of Yang-Mills theory to describe the strong interactions of elementary particles depends on a subtle quantum mechanical property called the "mass gap": the quantum particles have positive masses, even though the classical waves travel at the speed of light. This property has been discovered by physicists from experiment and confirmed by computer simulations, but it still has not been understood from a theoretical point of view. Progress in establishing the existence of the Yang-Mills theory and a mass gap will require the introduction of fundamental new ideas both in physics and in mathematics.

Literature Search
As for a literature search on this topic, there are no Mathematical Physics models that I know about that assume a static universe in compression. All the theories purpose incorrectly that the universe is expanding. In order to understand the Mass Gap problem, we need to understand that there is a force on the exterior of the universe that is compressing the "dust" or "clay particles" together. Mass precipices. The only place you find this theory is in my 6 volume work entitled, Astrotheology, The Missing Link, and Cusack’s Model of the Universe [1,2].

Explanation
To begin, the Total Energy in the universe follows the e^{t}, because the universe exist where the function equals the derivative ($y=y’=\text{telescopic}$) function while the Kinetic Energy follows the Ln function. The difference is the Potential Energy stored in Mass, called Rm and is equal to $cuz=\pi-e=0.4233$ (Figure 1). In my work Astrotheology, The Missing Link, I’ve calculated that Gravity=π/ Ln 1.618. When t=Pi or the human frequency is 1/Pi=31.8 Hz, then humans perceive the Energy being squeezed into a Mass signal. Time is determined to follow the Golden Mean Equation. $t^2-t-1=0$, roots, $t=0.618, 1.618$. I call this the Energy parabola [3]. Space is formed by the cross product of E and t is:

$$s=F$$

$$F=\sin \theta$$

We know in a harmonic system, the Cairnaut Second Order Linear Ordinary Differential Equation applies to the wave energy So,

$$\partial E^2/\partial t - E = 0$$

I’ve shown $G=E^2$

Gravity is that irreducible value that occurs when,

$$y=y’$$

$$y=E$$ (Figure 2).

So the volume of this half cube is,

$$1/2*1*4/3=6.66=G$$

When we subtract the weak nuclear force of of $G=6.67$, we get,
Now the resistance to mass formation is bounded by the right triangle and determined by Pythagoras theorem.

\[(\text{Ln} e)^2 + (\text{Ln} \pi)^2 + (\text{Ln} R_m)^2 = 0 \]

This illustrates that when space and time are equal, and when the force on the exterior of the universe in compression, equals sin theta, the universe we see at 31.8 Hz is tuned to human perception.

\[\rho = \frac{\pi}{\lambda} - \text{Re} \]

Where \(\rho\) = density; \(\text{Re} = \) Reynolds’s number,

\[\sin \theta = ax + by + cz\]

The force follows as in ewave; the space and time follow the plane.

\[\frac{1}{\sqrt{2}} = at + bE + cs\]

\[\frac{1}{\sqrt{2}} = st + \sqrt{E + (\sin 1)E + Es}\]

Equation of the Universe

\[1/sqrt{2} = s / sqrt{2} * t^2 + (sin 1 + s)E\]

Knowing \(E = 1/t, \ t^4 + 0.89207(1/t - 3/4) = 0\)

\[t^4 + c^2 - 0.75 = 0\]

Let \(t = 1\)

\[1^4 + c^2 - 0.75 = 0\]

\[C = 1/2 = R\]

\[\text{Area} = \frac{\pi}{4}\]

\[\text{circumference} = \frac{\pi}{4}\]

\[4A = \text{circumference}\]

\[s = |E||t|cos\theta\]

\[\theta = 60^\circ\] Mohr-Coulomb Failure Plane

Due to the internal s structure of the Kaolinite, the universal material fails at 60 degrees.

Poisson’s Ratio

\[\lambda = \nu * E / [(1 + \mu)(1 - 2\mu)]\]

\(m = 0.27\) this is Poisson’s Ratio for universal material

\(E = 1/cu\)

\(k = 2\pi/\lambda\)

\[= 5.7552\]

\[= \frac{1}{\sqrt{5}}\]

\(f = A \sin (at - kr) + B \cos (ot - kr)\)

\(\omega = 1; 0.15 = 0.1666 = 60^\circ / 360^\circ\)

Where

\[A = -u0 * a^2 \cos (ka) + (ka)(\sin(ka))/ (1 + (ka)^2)\]

\(u0 = 1\)

\(a = 28.7\)

The universe exists where the Momentum, Force are coincide. The derivative is equal to the function. \(s = v = a\)

\[A = 0.8475; s = v = a = \sin 1\]

And

\[B = -u0 * a^2 \sin (ka) - (ka)\cos(ka)/ (1 + (ka)^2) = -0.6313 \sim G\]

\[F = \sin \theta = \cos \theta = P\]

\[F' = -0.4272 \sim 0.2824\]

\[\sim (\pi - 2a)\]

\[F' = 0.709 \sim 1/\sqrt{2}\]

\[\pi - 2a = \sin \theta = \cos \theta\]

\[\theta = 45^\circ\]

So there are 8 cycles in a complete period of \(2\pi\).

\[1/81 = 0.12345679; 8\] is missing. The mass figure crest over 1 at decimal 8 (Figure 4). The universe is where the cylindrical, polar, and Cartesian coordinate systems coincide. There is an inside and an outside to the known universe. An energy wave travels in the outer cylinder which reaches a climax at the inner universe ceiling. Actually, the force of this universal earthquake is such that the energy level is just
right to cause space, and mass to precipitate. The force acting on the inner universe is $\sin \theta = 8/3$.

$$\frac{1}{\omega a c^2} = \frac{1}{\rho}$$

So there you have it $v = 0.27$, $E = 1/0.4233$, and $\rho = 0.127$ (Figures 7-9).

To verify the calculations of the outer and inner universe, the dimension of the outer ring was determined to be within experimental error [5]

$$4/3 + 28.9 + 4/3 = \text{Diameter}$$

$$(1/2)(1/R^2) = (1/2)(1/c^2)$$

$$R^2 = 1/2(5.55) = 0.9009 = c^2$$

$$C^2 = R$$

$$\text{Area} = \pi R^2 = \pi (c^2) \text{circum.} = 2\pi R = 2\pi c^2$$

$$\frac{\text{Area}}{\text{Circumference}} = 1/2$$

Figure 6: Illustration of plate with a hole and the exponential decline.

$$\sin \theta = 1/\sqrt{2}$$

$$\cos \theta = \sqrt{1 - (1/2)}$$

$$\theta = 74.34 \text{ degrees}$$

$$\text{Hyp} = \sqrt{(0.27)^2 + (1)^2}$$

$$\text{N} = |nu||y| \sin \theta$$

$$\text{N}' = |nu||y| \cos \theta$$

$$\text{N} = \text{N}'$$

$$\text{N} = |nu||y| \sin \theta$$

$$\text{N}' = |nu||y| \cos \theta$$

$$\text{N} = |nu||y| \sin \theta$$

$$\text{N}' = |nu||y| \cos \theta$$

$$\text{N} = |nu||y| \sin \theta$$

$$\text{N}' = |nu||y| \cos \theta$$

Figure 7: Illustration of 7 dot and cross products.
\[\sin \theta \]

\[\cos \theta \]

\[\sin \theta - \sin \theta = -\cos \theta \]

\[\frac{\sin \theta}{\cos \theta} = \frac{534.246}{57^\circ} \]

\[\sin 3^\circ = 0.05230.0523/2.667 \]

\[= 196 \text{(Infinity)} \]

\[= 196/2 \]

\[= 981 \]

\[1/981 \]

\[0.1019 \]

\[N' \]

\[(0.27)\sqrt{2} \cdot \cos 74.34 \text{ deg} \]

\[1/N' = 0 \]

\[\Delta F = \frac{\{ M + Me \}}{2} / \text{cuz} \]

\[\Delta F = \frac{\{ M + Me \}}{2} \cdot \left\{ \frac{\pi - 1}{N'}\right\} \]

\[N' = \frac{\sqrt{2}\cos \theta}{\Delta F} \]

\[2(4.486) / \Delta F = \pi - 1 / (0.27) \cos 60 \text{ (Mass=4.486)} \]

\[\rho = 0.1272 \]

\[\Delta F = 2809 \]

\[\chi^\ast \rho = \Delta F \]

\[\chi^\ast = 2.2 - 0.83 \chi^{(1/3)} = 1.3022 \]

Continuing,

\[2M/\Delta F = ET - 1/Ep \]

\[((2

\[4(4.486)/\Delta F = \pi - 1 / (0.27) \cos 60 \text{ (Mass=4.486)} \]

\[\rho = 0.1272 \]

\[\Delta F = 2809 \]

\[\chi^\ast \rho = \Delta F \]

\[\chi^\ast = 2.2 - 0.83 \chi^{(1/3)} = 1.3022 \]

Continuing,

\[2M/\Delta F = ET - 1/Ep \]

\[((2 * 944.6)^2) / \pi = 1/\cos \theta \]

\[[2 * (2M) - E] / [\Delta F] = \pi \]

Or

\[4Fc^2 \rho = Ft \]

\[F = 1/cuz = E \]

Work Spring+Work Density = Work (Total)

\[4(t/cuz)c^2 \rho = Ft \]

Or

\[P = [Ft - Mc^2]/4 \]

Cusack’s Mass Formation Equations

\[\rho = \pi/4 - \text{Re (Figure 10)} \]

If we take a stress cube out of the cylindrical wall, we find that, when theta=60 degrees (Mohr coulomb Failure Plane), the sine wave force is enough to overcome the the resistance to mass Rm 2.667+4 = 6.67=G,

\[\frac{\Delta}{L_0} = \frac{\varepsilon}{\sigma/E} \]

\[= 4/(1/cuz) = 1.6932 \]
\[\partial L_0 = PL/AE \]
\[1.6392 = (2.667)L^3/AE \]
\[1.6392 = 2.667(4/3)\pi R^2 *(1/0.4233) = 2/\pi = dM/dt * \text{freq} \]
\[\varepsilon = \text{freq*dM/dt} = \sigma/E = \text{freq}*dM/dt \]

Note
\[\lim_{\varepsilon \to \infty} = \Delta \varepsilon = \Delta \int_{2}^{1/0.4233}\frac{1}{(1/\pi)\sigma} M = 1.52; M = 1 \] Mass Gap

Finally,

Newton's Gravitational Formula:
\[F < G M_1 M_2 / R^2 \]
\[F < 2/3 M (1)/(1)^2 \]
\[1.5F < M \]
\[1.5 < M \] QED

Using Divergence, the Mass Gap can be found another way, as follows:
\[\text{div} \nabla = \lim_{\varepsilon \to \infty} \frac{b_1}{\varepsilon} \int h_b \nabla \delta \sigma \]

Where
\[\text{div} \nabla = \text{Scalar Field} = \text{Area of the circle with radius} = 1 \]
\[1/\tau = 1/c \text{ area of the vector field where} c = \text{speed of light}. \text{This is a complete and closed system in Hilbert Space}. \]

\[\sigma = E \varepsilon = (\pi - e) \varepsilon = (0.4233)(1 - \sin 1) \]
\[\pi - e = \text{cuz} = \text{Resistance of Energy to Mass formation}. \]
\[\varepsilon = \delta L / L = \text{Moment} = 1 - \sin 1 = 0.1585 = 0.8415 = \sin 1 \]

And,

Area = circumference of a circle,
\[y = y' \]
\[\pi R^2 = 2\pi R \]

R = 1

Why is the sin (1 rad) required?
\[S = |E||t| \sin \theta \]
\[E = 1, t = 1 \]
\[s = \sin \theta \]

Dot Product = Cross Product
\[|E||t| \cos \theta = |E||t| \sin \theta \]
\[-\sin \theta = \cos \theta \sin \theta = v = a = s = s' = s'' \]
\[\Theta = 45 \text{degrees} \]

But \(s = t = 1 \)
\[\sin \theta = \sin t = \sin 1 = 0.8415 \]

Lorentz Transform = \(\sqrt{1 + v^2/c^2} \)
\[= \sqrt{1 + 0.8415^2 / 2.99792} = 0.8481 \]
\[\arcsin(0.8481) = 58 \text{degrees} 1 \text{ rad} \]

So, continuing
\[\text{div} \nabla = 1/V = 1/\delta t \tau \cdot V + 2/2 t \cdot E \cdot c \]
\[\text{div} \nabla = \pi/2 \cdot (\pi - e)(1 - \sin 1) \]
\[\delta t = 1/c \]

So,
\[\text{div} \nabla = c/2 \cdot V^2 \cdot \sigma \]
\[\text{div} \nabla / (V^2 \cdot \sigma) = 1.5 = \text{Mass gap} \]
\[A_{2} / (\pi^2 \cdot F) = 1.5 \]
\[\pi^2 / \pi^2 / F = 1.5 \]
\[1 / F = \text{Mass Gap} \]

The Super force is \(F = \sin \theta = \sin t \) where \(t = 1 \). (AstroTheology, Cusack's Universe)

1/sin 1 rad = 118.8 Mass of the last element 118 in the periodic table.

The equation of the universe is,
\[\int_{ba}^{1/n!} = E = ex \]

There are 118 chemical elements. So,

\[\text{MASS GAP} \]
\[E \]
\[\text{P.E.} = K.E. \]
\[Mgh = 1/2 \text{mv}^2 \]
\[gh = 1/2 \text{v}^2 \]
\[a = 1/2 \text{v}^2 \]
\[2(\sin 1)(4/3) = \text{v}^2 \]
\[v = 1.5 \]
\[= 1/G \]
\[v^* G = 1 \]

Figure 10: Illustration of the stress cube.

Figure 11: The Hilbert space, energy and time vectors, separated by 60 degrees, the critical angle of repose for the Kaolinite Universe.
Ln (1/n!)=Ln (1/118!)=4.482=Mass
E=Mc²=4.482(2.997929)^2=0.402=Reynold's Number.
0.402/c=0.402/2.9979=0.1341
Conjugate=1-0.1341=0.866=Sin 60 degrees=critical angle of repose
for kaolinite Universe.

QED (Figure 11)
And, the Dirac delta function,
delta=[1/c for |x|=|t|=c/2=3/2=1.5] (Actually, 1.499 as above)

Conclusion
The mass gap exists because as we've seen in these last few
pages again, the gravity would pull apart any atoms above 6.67 or
n=4+τ=2.667; and it takes l=2.667 at 60 degrees to compress energy
into the form mass. The resistance to mass is rm=cuz=π-e.

References
1. Cusack P (2015) Astrotheology, the missing link, Cusack's model of the
 universe. Canada.
tailing of interfaces using self-assembled monolayers. Mechanics of Materials
98: 71-80.
 Mathematics Institute.
5. Byron FW, Fuller RW (1969) Mathematics of classical and quantum physics,
 Dover, Newyork.