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Introduction
One of the recent development in the theory Painleve equations is 

their extension quantum and non cummutaive (NC). In that directions 
it was attempted successfully [1,2] where the quantum analogues of 
these equations by using their symmetric form these equation presented 
in a study [3], for example the quantum version of classical Painleve II 
equation can be obtained on solving the following system for field f2:
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Where the fields f0, f1, f2 are subjected to obey some quantum 
commutation relations and α0, α1 are constant parameters. The 
quantum Painleve II equation,

3
2 22 2f f zf c′′ = − +                    (2)

derived [1] may be considered as matrix version of classical 
Painleve II equation because the quantum commutation relations are 
defined for the fields where as the fields fi and variable z are commuting 
and c=α1 α0. In classical framework various integrable aspects of 
Painleve II equation have been studied such as the associated Riemann-
Hilbert problem, connection to well known integrable systems and its 
Hamiltonian hierarchies detail can be found in early studies [4-6]. The 
study of its quantum and NC analogues therefore is important because 
that equation has been taken as s model in many physicals problems, 
few are mentioned in [7-11]. In order to understand the compatibility 
of Painleve equation from mathematical and physical point of views it 
will interesting to study their different properties on noncommutative 
spaces as other well known integrable systems [12-24] possess on 
deformed spaces.Keeping that motivation an initial achievement in NC 
direction was obtained by Retakh and Roubtsov [25], where they have 
introduced purely NC version of PII equation,
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by using its symmetric form presented in previous study [1] and in 
their computations the fields f0, f1, f2 and variable z obey a kind of star 
product, purely non-commuting elements and more over its solutions 
were expressed in terms of to NC Toda solutions. One the contribution 
in that direction can be found in a study [26] where quasideterminant 
solutions of that NC PII equation presented through the Darboux 

transformations. Later on the zero-curvature representation of 
associated nonlinear equations to NC Toda systems of a study [25] 
obtained previously [27] and further these results were extended to 
calculate NC PII solutions taking NC Toda solutions as seed at n=0 in 
its Darboux solutions.

In this article we have extended the  Nagoya [1] work on quantum 
PII equation to derive it non-abelian analogue. Here I have introduced 
a zero-curvature condition that is equivalent to the non-abelian 
quantum PII equation,
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these derivations are also involved the symmetric form (1) of PII 
equation and fields f0, f1, f2 obey the quantum commutation relation 
given in a study [1].The basic difference between the quantum PiI 
equation and the non-abelian quantum PII eqn. (4) is that here the 
variable z and field f2 appear as non commuting elements but in cases of 
Nagoya [1] these elements treated classically, as commuting variables. 
Further this can be shown that under the classical limit 0→  the 
system (4) reduces to its classical analogue. More over the non-trivial 
Darboux solutions of Non-abelian quantum PII with its riccati form 
are presented.

Lax Formalism and Zero-Curvature Condition
The Lax formalism first was introduced by Lax [28] that plays very 

important role in theory of integrable whose compatibility condition 
yields Lax equation. For given two operators, say Land P, are subjected 
to a linear system L(x, t)Ψ=λΨ, Ψt=P(x,t)Ψ and the compatibility 
condition yields Lax equation,

Lt=[P,L]                    (5)

Where Ψ is a column vector, λ is spectral parameter and [P, L] 
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α1, α2, α3 are parameters this systems also obey the affine Weyl group 
actions. The dependent functions f0, f1, f2, f3 are further subjected to 

the remarks 0 2
0 2 2

f ff f +′ ′+ =  and 1 3
1 3 2

f ff f +′ ′+ =  then by introducing time 

variable explicitly through the exponential 2
z

e  two of the variables can 

be easily eliminated. Lets introduce an auxiliary variable 
2
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e
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ω = −  and 

solve the system (8) for ω  we obtain quantum PV equation see details 
in section 3.3 Now let us define Lax operators L and L as block matrices 
of order 4, as under,
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With diagonal element 
1 0

1i
i

L
f

 
=  − − 

The second Lax operator can be written as,
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And element of this operator is given by:
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If we compute Lax eqn. (5) for the operators (18) and (19) we obtain 
quantum PV systems. 3. Zero-curvature representation of nonabelian 
QPII equation.

Zero-Curvature Representation of Nonabelian QPII 
Equation

Proposition 1.3

The following linear system:

( ) ( ); , ;A z B zλ λ λΨ = Ψ Ψ = Ψ                   (11)

With lax matrics,
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       (12)

yields non-abelian quantum PII equation with quantum commutation 

is commutator. The Lax formalism extensively has been applied to 
study various integrable aspects of classical as well as NC integrable 
systems such as to construct their solitonic solution through the 
inverse scattering data and one of interesting use of Lax systems is to 
derive Darboux-Backlund transformations of integrable systems. More 
over many other properties of integrable systems has been studied in 
wide spectrum in the framework Lax formalism, see for example [12-
19]. The Lax representations to the symmetric forms of higher order 
Painleve equations mentioned in propositions 1.1 and 1.2. Further this 
can be calculated that linear system Ψx=A(x, t) Ψ and Ψt=B(x, t) Ψ is 
equivalent to expression,

At-Bx=[B,A]                      (6)

called zero curvature which has been applied to many classical and 
NC systems, for a brief description [20-24].

Proposition 1.1

The l symmetric form presented in,
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to quantum PIV equation can be represented by a Lax equation.

Proof: From above systems quantum PIV equation can be obtained 
by eliminating f0 and f2 from the system (7) here the dependent variable 
f0, f1 and f2 obey the following relation,

∂t(f0+f1+f2
2)=k,

Where k=α0+α1+α2for simplicity k is normalized to 1.This system 
also admit the affine Weyl group actions of type A(1) l, see the detail in 
section 3:3. For the Lax representation to symmetric form of PIV eqn. 
(7) let us define the diagonal elements of mtrices L and P in eqn. (5) by,
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Respectively, where,
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We can show that the Lax eqn. (5) for the operators A and B with 
diagonal elements defined above yields the system system (7).

Proposition 1.2

The generating system of quantum PV equation,
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Can be written in term of Lax operator.

Proof: In above systems (8) f 0, f1, f2, f3 are NC functions of z andα0, 
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relations given in a study [1].

Proof: Now starting from following condition,

Az-Bλ=[B,A]                    (13)

And linear system (12) we can calculate the following values,

( )2 2 2 2 3 2 2 2 12 4zA if f if f i f fσ σ λ σ′ ′ ′′ ′= + − + −                   (14)

Bλ=-2iσ3                    (15)
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Where,
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Above result with eqn. (13) are equivalent to,
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And we have,
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And

[ ]3
2 2 2 2 22 2 , , 4if if i z f ic i f f

+ −

 ′′′− + − + −  
              (19)

Eqn. (18) is a new result associated to quantum P-II equation. In 
eqn. (19)the term [ ]2 2, 2i f f iλ

−
′ ′ −   can be eliminated by using equation 

2 1 0f f f′ = −  from eqn. (1) the quantum commutation relation in eqn. 

(2) and row replace f2 by 1
2

1
2

fλ−− , then commutation relation become,
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Now we can write following commutation relation,
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And then applying (20) we get,
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And after using (11) we find the following relation,
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System (22) can be regarded as nonabelian quantum P II equation 
and its classical analogue can be obtained as 0→

Darboux Transformation for Non-Abelian Quantum 
PII Equation

Proposition 2.1

The Darboux transformation for the solution u of non-abelian 

quantum PII eqn. (22) with the help of its associated linear system can 
be constructed in the following form

[ ] 1 1 1
1 1 1 1 11 4u uλ χ χ χ− − −= − Φ +Φ Φ

here u[1] is a new solution of QP-II equation generated by initial 
solution u, here f2 has been replaced by u, just for a simple notation.

Proof: For the derivation of non-abelian QP-II Darboux 

transformation we consider the linear system (11) and 
χ

ψ
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2 2 1

1 2 2

18 2 4
4

1 4 8 2
4

z

z

i iu iz iu C u

iu c u i iu izλ

λ λ λχ χ

λ λ λ

−

−

 + − − + − +    
 =   Φ Φ    + − − − − + 
 





(23)

2
2

i u u
u i u

χ λ χ
λ

− +    
=    Φ + Φ    

                 (24)

The standard transformation [29] on components of vector Ψ are,
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1 1 1 1 11χ χ λ λ λ χ λ χ−→ = Φ − Φ                  (25)

[ ] ( ) ( )1
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Solution at λ and χ 1(λ1), Φ1(λ1) with solution at λ=λ1 of 
equations and (24) and with eqns. (25) and (26), we have,
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Where,
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By using eqns. (24) and (28) we get,

( )2z i u uχ λ χ= − + + Φ                     (29)

( )z i u uλ χΦ = + Φ +                    (30)

And

[ ] [ ]( ) [ ] [ ] [ ]1 2 1 1 1 1z i u uχ λ χ= − + + Φ                    (31)

[ ] [ ]( ) [ ] [ ] [ ]1 2 1 1 1 1z i u u uλ ϕΦ = + Φ +                  (32)

And now transformation on u,

[ ] 1 1 1
1 1 1 1 11 4 1u uλ χ χ χ− − −= − Φ +Φ Φ                    (33)

Conclusion
In this article a procedure has been detailed to construct the non-

abelian analogue of quantum PII equation given in a study [1] and 
further non-trivial Darboux solutions of that system are also presented. 
This may be taken as initial step to construct the non-abelian analogues 
of remaining members of Painleve transcendents involve the quantum 
commutation relations between variables and fields as new results with 
their Darboux solutions through linear representations as done in this 
article for non-abelian quantum PII equation.
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