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Introduction
Parameter estimation is very important for the analysis of models 

in systems biology. Computational modeling is a central approach 
in systems biology, for studying increasingly complex biochemical 
systems. Progress in experimental techniques, e.g. the possibility to 
measure small numbers of molecules in single cells [1], highlights 
the need for stochastic modeling approaches. Simulation methods 
for stochastic processes are being developed for decades since [2], 
and nowadays exist with a lot of variants [3]. Parameter estimation 
methods for stochastic models, however, are still in the early phase of 
development.

We have identified a number of desirable properties that a 
parameter estimation procedure should have, in order to be useful in 
actual biological applications: It should work with measurements from 
few or even a single realization of the physical process, i.e. it should 
not require that enough measurements are made to reconstruct reliable 
probability distributions, or other statistical measures for all time 
points. It should work in cases where only partial measurements of 
the systems’ state are possible, obviously also including measurement 
errors. It should not assume that the stochastic system approaches 
the large volume limit, i.e. the approach should also be valid, if the 
stochastic system exhibits a behavior that is qualitatively different from 
what would be covered by a deterministic model. On a more technical 
side, it is beneficial if the actual target function is deterministic (and 
differentiable), and if it can be computed efficiently. This means that 
a wide range of numerical optimization techniques can be employed, 
including gradient based local methods, numerous global optimization 
schemes, or Bayesian approaches.

The problem for parameter estimation for stochastic models can 
be written in the following form: We assume that the experimental or 
simulated data measures at each time point ti, i=1,…,n, the number 

of molecules of species vi in the system, hence 0iv ∈ . Each data set 
v=(v1,…vn) is stochastic. This means that even two simulated realization 
of the system without measurement noise can be different, see figure 
1. Figure 1 does also indicate that the mean of stochastic simulations
is not close to the ODE solution. Furthermore, it is assumed that the
systems behavior depends on some unknown parameters qθ ∈ which
are to be estimated. To this goal, the data v is compared to simulation
with respect to some objective function F, which measures the quality
of the fit. Parameter estimation means finding the optimal value θ̂  for
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Abstract
Parameter estimation is very important for the analysis of models in systems biology. Stochastic models are of 

increasing importance. However, parameter estimation of stochastic models is still in the early phase of development 
and there is need for efficient methods to estimate model parameters from time course data, which is intrinsically 
stochastic, only partially observed and has measurement noise.

In this article, a fast and efficient method that is well established in the field of parameter estimation for systems 
of Ordinary Differential Equations (ODE) is adapted to stochastic models. The focus is on the objective function 
which is shown to have advantageous properties, that make it directly applicable to problems in systems biology. The 
proposed method can deal with stochastic systems, where the behaviour qualitatively differs from the corresponding 
deterministic description. It works with measurements from a single realization of the stochastic process, and with 
partially observed processes, including measurement errors. The objective function is deterministic, therefore a wide 
range of optimization methods, from derivative based methods to global optimization to Bayesian techniques can be 
applied. The computational effort required is comparable to similar methods for parameter estimation in deterministic 
models. To construct the objective function, a multiple shooting procedure is used, in which the continuity constraints 
are relaxed to allow for stochasticity. Unobserved states are treated by enlarging the optimization vector and using 
resulting values from the forward integration. Test functions are suggested that allow to monitor the validity of the 
approximations involved in this approach. The quality of the method is evaluated for some example models, with 
a statistic of 50 estimates from 50 stochastic realizations. It is shown that the method performs well compared to 
established approaches.
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Figure 1: ODE and stochastic simulation of the Calcium oscillation 
model. The graphics on the left side shows an ODE simulation of the Calcium 
oscillation model. The graphics on the right side shows two stochastic 
realizations of the Calcium oscillation system. Parameters and initial values as 
given in the results section. 
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the parameter. For models of ODE, the choice of the objective function 
has been widely discussed [4], and in case of normally distributed 
measurement error, the common choice is a least squares function. 
The focus of this article will be the objective function F, for stochastic 
models.

Approaches exist for time series data using stochastic simulations. 
Due to the Markov property of the time series, the likelihood function 
factorizes into the product of transition probabilities. These transition 
probabilities are generally unknown in stochastic modeling. They can 
be estimated using stochastic simulations. This can be done with density 
estimation methods [5,6]. Another approach is the use of a reversible 
jump algorithm [7]. The parameter estimation is then performed with 
Bayesian methods. An alternative to that is the use of a stochastic 
gradient descent [8], and the use of a reversible jump Markov chain, 
Monte Carlo method, for the estimation of the transition probabilities. 
Using a surrogate probabilistic model as an approximation, is faster 
from a computational point of view [9]. Another approximation is 
suggested in form of an approximate maximum likelihood method 
[10], where also a singular value decomposition likelihood method is 
described. A use of approximate Bayesian methods is suggested [11].

A second class of methods focuses on a numerical solution of the 
Chemical Master Equation (CME), which describes the probability for 
each state, as a function of the time. These systems are generally high 
dimensional. To address this problem, a state space truncation can be 
used [12], or moment-closure methods, which are an approximation 
focusing on a finite number of moments of the probability distribution 
[13,14]. Parameter estimation with the CME and an approximation 
for the likelihood function for small systems, or a hybrid method for 
large systems is suggested in [15]. Deuflhard et al. [16] and Engblom 
[17] use an adaptive Galerkin method for the solution of the CME. If 
distribution information is available from measurement, a finite state 
projection [18], can be used to solve the CME without simulations. 
The common challenge is the fact that the solution of the CME, as well 
as simulation-based methods become very time-consuming, as the 
number of states in the state space becomes larger.

Moment matching methods use repeated measurements to estimate 
moments of the distribution for the parameter estimation [19,20]. 
Further approaches can be taken from stochastic epidemic models, and 
are based on expectation maximization algorithms or Martingale based 
approaches [21]. In the case of large numbers of molecules, there are 
theoretical results available, describing the properties of a least-squares 
estimate [22]. 

This article suggests a new method for estimating parameters of 
stochastic models. The method is able to cope with data from a single 
stochastic trajectory, which only measures some of the species in the 
system at discrete time points. The behavior of this single trajectory 
might be well different from the mean or an ODE solution (Figure 1). 
The approach is based on a method proposed by Bock [23], for the 
parameter estimation in systems of Ordinary Differential Equations 
(ODE), further developed [24], and already successfully applied to 
deterministic systems with chaotic behavior [25,26]. The method can 
tackle models with fully observed and partially observed data sets. The 
fact that it works without stochastic simulations and without solving a 
high dimensional CME means that it is possible to approach systems of 
a size, as large as realistic models being tackled with ODEs. As the the 
evaluation of the objective function and the numerical optimization 
procedure can be separated, the article focuses on the objective 
function. For the numerical optimization of this deterministic function, 

all methods from derivative based methods to global optimization 
techniques to Bayesian methods can be applied. These techniques then 
also allow for important other features, such as confidence intervals 
for the parameters or experimental design. The article restricts itself 
to the test of the objective function, especially with respect to different 
stochastic realizations. The objective function is based on short time 
ODE integration and performs successfully, even in models which 
behave qualitatively different modeled stochastically (see [27] for an 
example of such a model). The advantage is very high speed, since 
neither solving a high dimensional CME system nor lots of stochastic 
simulations are required.

As the objective function is deterministic, the estimator for a 
single stochastic time course is unique. Using the same model with the 
same parameters and initial conditions, the estimation will result in a 
different value due to the intrinsic stochasticity. To test the quality of 
the objective function, it is therefore, necessary to estimate more than 
one stochastic realization of the same model, with the same parameters 
and initial conditions. This article uses 50 different realizations for each 
model. A statistic over the 50 estimations can then be used to asses the 
quality of the objective function. It has to be underlined that the 50 
realizations are only used to test the quality of the objective function. 
For an estimation one realization is sufficient.

The method is described with equidistant time points of 
measurements here, for simplicity. It is possible to apply it without 
changes to non equidistant time points of measurements, which is very 
important for the applicability of optimum experimental design. Due 
to its structure, the method is easily able to handle measurement noise 
,although it will of course reduce information. As the method uses an 
ODE approximation on short time intervals for stochastic data, test 
functions will be suggested to check how well this approximation works, 
and it will be demonstrated that this is not problematic, even in models 
with irregular stochastic oscillations. Furthermore, it is demonstrated 
that the method can even be successful in models which are structurally 
not identifiable, using single shooting ODE methods. As the objective 
function of the method is completely deterministic it depends on the 
user’s choice, whether to apply derivative based methods or methods 
without derivatives for the optimization.

The article is structured as follows:

The method section will show how the objective function is 
composed. This objective function will be extended to partially 
observed models.

The results section will show the performance of the objective 
function for different models: first an Immigration-Death model, 
which is on the one hand an instructive example, but allows on the 
other hand to compare the performance of the method to an exact 
analytical solution. Second is a Lotka-Volterra model also treated by 
Boys et al. [7], followed by a Calcium oscillation model [27]. To evaluate 
the method, it is applied to 50 different data sets of each model and 
statistics of the 50 resulting estimates are presented. The conclusion 
section will give some concluding remarks and an outlook. 

Method
Stochastic models describe the systems dynamics with a discrete 

continuous time Markov jump process. The time dependent 
probabilities of this process are described by the CME. Stochastic 
modeling can lead to system’s behavior, which is qualitatively different 
from the behavior of the ODE-modeled system. Qualitatively, different 
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variables with mean zero and constant variance, the least squares 
estimator 

arg min ( , )F vθθ θ
∧

=

with 

2
1 1 2

1

( , ) || ( , , , ) ||
n

i i i i
i

F v h t v t vθ θ − −
=

= −∑
                                                    

(1)

is a Maximum Likelihood estimator. In general, the distribution 
for a time point in a stochastic model is not known, and not necessarily 
Gaussian. Hence, theoretically the properties of a Maximum Likelihood 
estimator can not be guaranteed. In practice, it is possible to test if 
the åi perform approximately like independent normally distributed 
random variables, with mean zero. If this is the case, the estimator 
might still be quite powerful. Later in this section, test functions will be 
suggested which describe the properties of the residuals. The structure 
of equation (1) allows handling normally distributed measurement 
noise, as well without loosing the desired properties. 

As equation (1) corresponds to the multi-experiment setting, 
described by Schlöder and Bock [24], it is possible to use the efficient 
methods suggested there to solve the optimization problem. 

Partially Observed Models
Assume that only the first d components of the D dimensional 

vector of species ν can be observed. At time t0, the unobserved states 
( 1) ( )
0 0,...,d Dv v+ are also used as optimization variables now. In fact, 

the unobserved states are discrete numbers, but for the optimization 
purpose, this condition is relaxed and they are optimized as real 
numbers. For the solution of the initial value problem on 1[ , ]i it t−  

instead of the full measurement v, use the observed states (1) ( )
1 1,..., d

i iv v− −  
from the measurement and for the unobserved states, the result 
of the initial value problem on the previous time interval, hence 

( 1,..., )
1 2( , , , ).d D

i ih t tθ+
− −⋅  It is possible to enlarge the optimization 

vector even more, and to include also further unobserved states. 
Formally, define an index set { }0t K⊂ which contains all time points 
at which the unobserved states will be included in the optimization 

variable. Denote with ( ) ( 1) ( )( ,..., )j d D
j jKv v v+= the unobserved states 

in the optimization vector, at time jt  and with ( )( )j
K j KKv v ∈= , the 

union of unobserved states at different time points. Now define the 

completion of the observed measurement as v with 

(1) ( ) ( )

(1) ( ) ( 1,... )
1 1

,..., , :

,..., , ( , , , ) : .

d j
jj j K

j d d D
j j j jj j

v v v t K
v
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 ∈=
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



Then again, as in the fully observed case, a distance measure is used 
to compare the result of the integration with the data point: 

2(1,..., )(1,..., )
1 1 2

1

( , , ) ( , , , )
n

dd
K K i i i i

i

F v h t v t vθ θ θ − −
=

= −∑                          (2)

The case K={t0} means that just the first unobserved state is 
included in the optimization, and the case K={t0,t1,…,tn} means that all 
unobserved states are included in the optimization. The results section 
will show examples for different K.

means that it is not just the behavior of the ODE system plus some 
noise. This can be illustrated by the Calcium oscillation model of 
Kummer et al. [27]. This suggests that the methods for parameter 
estimation in ODE models might not be suited for stochastic models.

It is assumed that the experimental or simulated data measures at 
each time point ti, i=1,…,n, the number of molecules of species vi in 
the system, hence 0iv ∈ . Furthermore, it is assumed that the systems 
behavior depends on some unknown parameters qθ ∈ which are to 
be estimated. To this goal, the data v is compared to simulation, with 
respect to some objective function F, which measures the quality of 
the fit. Parameter estimation means finding the optimal valueθ

∧
 for the 

parameter: 

arg min ( , )F vθθ θ
∧

=  

As mentioned in the introduction for ODE models, the choice 
of the objective function has been widely discussed. The focus of this 
article will be the objective function F for stochastic models.

Due to the Markov property, the likelihood function factorizes into 
the product of transition probabilities: 

1 1
1

( , ) ( , | , )
n

i i i i
i

L v p v t v tθθ − −
=

=∏  

The transition probability pθ  is generally not known, and might 
either be estimated by means of simulations, or calculated by using 
the solution of a high dimensional CME system, both of which is very 
time consuming. The approach approximates the system on the short 
time interval 1[ , ]i it t−  with an ODE model. Short in this context means 
relatively short with respect to the systems dynamics, as an experiment 
should be designed in a way that it covers the systems dynamics. The 
fact that the approximation is done only on a very short time interval is 
crucial. An ODE approximation requires stronger assumptions than a 
linear noise approximation, but as this approximation only has to hold 
on a short time interval, it is much less restrictive than the usual linear 
noise approximation [28]. Further advantages of the relatively short 
integration interval have already been described in detail for parameter 
estimation for ODEs [29]: a prior information on state variables from 
measurement can be included in the multiple shooting scheme. This 
damps influence of parameter guesses. Numerical stability is increased 
as splitting the intervals reduces error propagation. 

Fully Observed Case
The proposed approach is motivated by the methods for parameter 

estimation in ODE systems introduced by Bock [23], and uses short 
time ODE integration: starting at time point 1it −  at state 1iv − , the 
initial value problem of the systems of ODEs is solved with initial 
value, 1iv −  at time 1it −  until time it . The result, 1 1( , , , )i i ih t v tθ − − , is 
compared to the data point vi, and the residuum is defined as 

1 1( , , , )i i i i iv h t v tε θ − −= −

which for the model leads to the description 

1 0 01 1
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31 1
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If the residuals ε are independent normally distributed random 
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Comments on the Approximation
As the method uses an approximation, it is very important to 

investigate if a model satisfies the approximation. Therefore, this 
subsection suggests test functions to see how well the approximation 

works. The mean of the residuals 
1

1 n
iin =

∈= ∈∑ can be calculated. If the 

model is well approximated, this should be small, in comparison with 
the range of the residuals. 

To see if the residuals are approximately normally distributed, 
calculate the Kullback-Leibler divergence of a density estimate from 
the i∈ and a centered normal distribution of variance 2

KLσ
 
restricted 

to the support of the density estimate. The Kullback-Leibler divergence 
is then minimized over 2

KLσ . If the Kullback-Leibler divergence for 
the optimal 2

KLσ is small, this means that the i∈ can be approximated 
well by a normal distribution with constant variance. The point that the 
variance is constant is important, as it is not possible to estimate the 
variance from only one observation per time point.

Instead of calculating the correlation between the time points, it 
will be calculated how long it takes until the residuals are uncorrelated. 
Estimate the autocorrelation of the residuals: 

2
1

1ˆ( , ) ( )( )
ˆ( ) i i k

n k

t t
i

R k
n k σ +

−

∈ =

∈ = ∈ −∈ ∈ −∈
− ∑

where k represents the time step and 2σ̂∈ an estimate for the variance, 

within the residuals ε. If ε is such that ˆ: min( | ( , ) 0) 0k k R k= ∈ < >

exists define the autocorrelation time as ( ) kact t∈ =


. If the total horizon 
of measurements tn-t0 is only of the same size as the autocorrelation 
time of the residuals ( )act ∈ his indicates correlated residuals, which 
indicate that the approximation might not be suitable. Furthermore, 
it is an important question for the quality of the estimation how much 
information can be found with the MSS method in the (intrinsic) noisy 
system. A signal to noise ratio is defined componentwise as 

( )( )
1 1 1( ) 1
( )

1

( , , , )
( , )

n ll
t i i il i

n l
ii

h t v t v
SNR v

θ
θ

− − −=

=

−
=

∈

∑
∑

 for l=1,…,d

The higher the SNR value is the more information is contained in 
the data. If the SNR is small (<1), many measurements are needed.

Optimization
In case of the fully observed system, the dimension of the 

optimization problem is exactly the number of parameters, namely 
q. In case of the partially observed system, the dimension of the 
optimization problem is the number of parameters plus the number 
of unobserved species times, the number of time points included in the 
optimization, q+(D−(d+1))×length(K).

As the objective function is completely deterministic–meaning, it is 
calculated without the use of stochastic simulations–the optimization 
procedure is the same, as in parameter estimation for ODE systems: it 
is possible to apply derivative based methods [29], or global methods 
[30], as well as including it in an approximate Bayesian framework, for 
example [11].

Certainly the optimization of (2) with larger K can be much more 
challenging than with K={0}, due to the increased dimensionality of 
the optimization problem. However, the numerical optimization 

techniques, especially questions of local minima and identifiability 
issues, as well as the question, whether derivative based or global 
method are preferable shall not be the focus of this article. Nevertheless, 
these points are of importance and suggested for further research.

Results
The result section will test the performance of the MSS objective 

function, with respect to the stochastic realizations. To this aim, 50 
stochastic realizations for each scenario are obtained from simulations, 
using the Gillespie method [2], with the software COPASI [31]. It is 
important to note that each of the stochastic realizations might look 
differently. For each single time course, data set the MSS function 
is optimized and a parameter estimate obtained. To investigate the 
influence of the intrinsic stochasticity, the mean of the 50 estimates is 
calculated to see whether the MSS functional is biased. The standard 
deviation of the 50 estimates is calculated to see how much the estimates 
are spreading around the mean, due to the stochasticity and the mean 
relative error for simpler comparison. These values will all be shown in 
result tables.

Calculating confidence intervals for each single estimate is desirable 
as well. In general, this is possible with the MSS function, applying 
more advanced numerical optimization techniques, as mentioned in 
the methods section. In connection with optimal design of experiment, 
this is planned for further research. As the focus of the article is the 
investigation of intrinsic stochasticity, data is assumed to be noise free. 
The Lotka-Volterra model shows that adding measurement noise leads 
to the expected behavior–namely that the accuracy of the estimates 
reduces with increasing level of noise. Very important for practical 
applicability are partially observed models, which are treated in detail 
for the models. 

Immigration-Death Model
The first example is an Immigration-Death model: 

1

2

X

X

θ

θ

∅→

→∅

where X is the substance and 1 2,θ θ  are parameters with a representation 
in ODEs 

1 2 0, (0)dx x x x
dt

θ θ= − =  

The investigation of this system is instructive, as it allows a 
comparison between the performance of the MSS functional (1), and 
the result with the exact transition probability, which can only be 
calculated exactly in very simple cases.

The exact transition probability from a state vi-1 at time point ti-1 to 
a state vi at time point ti can be calculated as a solution of the CME, or 
with the probability generating function [32].

To evaluate the performance of the MSS functional (1), it is 
compared to an estimation using Exact transition probabilities (EL). 
To that aim, a statistics is calculated of 50 data sets, which are obtained 
from simulations using the Gillespie method [2] ,with the software 
COPASI [31]. The initial condition is always the steady state of the 
system. This scenario is of special interest as the system is structurally 
unidentifiable, using traditional ODE methods. Therefore, it is also 
the most difficult scenario for parameter estimation. For each of the 
data sets, the MSS objective function and the objective function with 
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the exact transition probabilities are optimized using the software 
Mathematica [33]. Then, the mean and the standard deviation of both 
estimators, as well as the relative error are calculated. This procedure 
is done for different parameters and designs. The results are shown in 
table 1. To check the assumptions, the mean and autocorrelation time 
of the residuals, as well as the SNR are calculated (The letters in brackets 
indicate the chosen design, see for information table 1): 

8

9

8

8

ˆ( ) : 1 10 , 1, :0.14, ( ) 1.5, :0.21

ˆ( ) : 9 10 , 1, :0.18, ( ) 1, :0.17

ˆ( ) : 4 10 , 2.6, :0.01, ( ) 10, :0.50

ˆ( ) : 1 10 , 2.7, :0.03, ( ) 20, :0.55

KL

KL

KL

KL

A KL act SNR

B KL act SNR

C KL act SNR

D KL act SNR

σ

σ

σ

σ

−

−

−

−

∈= ⋅ = ∈ =

∈= ⋅ = ∈ =

∈= ⋅ = ∈ =

∈= ⋅ = ∈ =

  

While all other test functions give acceptable values, the SNR is 
very small in table 1 (A,B). This indicates that the systems dynamics 
is not well approximated by the MSS method. Using 100 observations 
does in this situation not give enough information, and leads to a 
biased estimate. Using many more observations as in table 1B resolves 
the problem.

The results given in table 1 lead to two conclusions: An estimation 
is possible and unbiased, if there are enough measurements, table 1 
(B,C). If the trajectory is very short table 1A, the estimator might be 
biased. The reason for that is that for a low SNR, more measurements 
are needed to sum up enough information for the estimation-see 
figure 2, which for each interval 1[ , ]i it t− shows the ODE dynamics, 
in form of the solution of the corresponding initial value problem 

1 1( , , , )i i ih t v tθ − − as well as the residuals (dotted red line). One can see 
that for this situation, the system’s dynamics are not well represented 
by the ODE solutions. 

The exact method, which is only possible in this simple example 
model, makes much better use of the intrinsic fluctuations, and therefore, 
results in more accurate estimates. The mean and autocorrelation time 

of the residuals behave very well, with respect to the comments on the 
residuals given in the methods section.

This example is a proof of concept, example as it shows that an 
estimation with the MSS method is possible, even in a case which 
would be structurally unidentifiable for traditional methods [30]. 

The results of table 1D can be compared to Wang et al. [8], where 
a different method is applied to the same setting. As there is only the 
result of one estimation procedure given a comparison with respect to 
unbiasedness and variance is not possible. However, 4/5 of the relative 
errors of table 1D are smaller than the relative error of Wang et al. [8].

Table 1 (B-D) also suggest that using this methods models become 
identifiable, which are unidentifiable using traditional ODE methods. 

Lotka-Volterra Model
Second example which is still small, but allows investigation of 

behavior in partially observed models is a Lotka-Volterra model: 
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where Y(1) is the prey and Y(2) the predator and 1 2 3, ,θ θ θ parameters. 
The first reaction of (3) is the prey reproduction, the second the 
predator reproduction, and the third is the predator death. In terms of 
ODEs, this system reads as 
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Estimation Results Rel err Test function SNR

EL MSS EL MSS

 (A) 100 observations, Δt=0.5, Θ(0) =(1,0.1)

 Θ1 1.00 ±0.19 1.56 ±0.92 15% 71% SNR: 0.21

Θ2 0.101 ±0.02 0.156 ±0.09 16% 72%

 (B) 2000 observations, Δt=0.5, Θ(0) =(1,0.1)

 Θ1 1.00 ±0.04 1.00 ±0.15 2% 13% SNR: 0.17

Θ2 0.101 ±0.00 0.101 ±0.015 2% 13%

 (C) 500 observations, Δt=5, Θ(0) =(1,0.1)

 Θ1 1.01 ±0.09 1.02 ±0.11 7% 9% SNR: 0.50

Θ2 0.101 ±0.01 0.102 ±0.01 7% 9%

 (D)100 observations, Δt=10, Θ(0) =(0.6,0.06)

 Θ1 0.60 ±0.12 0.65 ±0.17 15% 21% SNR: 0.55

Θ2 0.061 ±0.01 0.065 ±0.018 16% 22%

Table 1: Statistics of the estimation results for Immigration-Death model. The table shows that the MSS method works well in this example for three out of four 
experimental designs and the test functions identify the problematic design.
50 data sets are simulated using the Gillespie algorithm with initial value v0=10. For each of the 50 data sets an estimation is performed with an exact method (EL) and the 
MSS method. The table shows a statistic over the 50 estimates for both the exact and the MSS method: Parameter name (column 1), averages for exact method (column 
2), standard deviation of exact method (column 3), averages of MSS method (column 4), standard deviations of MSS method (column 5), relative errors of exact method 
(column 6) and MSS method (column 7) and the signal to noise (SNR) test function (column 7).
The SNR test function indicates a weak SNR in situation (A) and therefore identifies the case in which the MSS approximation is problematic. If this is the case many more 
observations are needed to resolve the problem despite still low SNR, situation (B), or another experimental design (C).
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This chapter also includes an investigation of the estimation with 
noisy data.

Fully observed case

To investigate the behavior of the MSS objective functional (1), 
a statistics is calculated from 50 data sets which are simulated with 
the Gillespie algorithm, using the software COPASI [31]. The true 
parameter was (0)θ =(0.5, 0.0025, 0.3) and 40 observations were taken 
with Δt=1. The initial conditions were (1) (2)

0 0( , )v v =(71, 79). The setting 
is chosen in a way such that it is identically with Boys et al. [7]. A 
comparison of the results will be given later in this section. 

Measurement noise is simulated as follow: For each time point, 
a normally distributed random variable is generated with the given 
variance. Then, it is rounded to the next integer. This is done because 
measurements are assumed to be integer counts. This is not necessary 
for theoretical reasons or performance of the estimation. For σ=10 
or σ=25 respectively, some negative measurements occur due to the 
measurement error. For σ=10, these are not corrected, which shows 
that the method can even handle negative data to some amount. For 
σ=25 measurements which are negative are set to zero, which leads to 
an measurement error, which is not centered around zero. The results 
show that the method is still able to handle that situation. Note that 
setting negative measurements to zero only implies the simulated ODE 
dynamics of the next time interval. For all later time intervals, the 
ODE is again initialized with a measurement, which well can be larger 

zero again. Further studies (without measurement noise) for cases in 
which the species die out show an acceptable estimation. Of course, 
the amount of information for the estimation is depending on the time 
point of die out.

For all data sets, the objective function is optimized with the software 
Mathematica [33]. Table 2 gives averages and standard deviation for the 
50 estimation results using (1). For each estimation result, the relative 
error is calculated. The test functions give the following results: for 
exact measurements ∈=(0.16, 0.07),

 
2ˆKLσ =(12, 11) KL:(0.2, 0.1), act(

∈ )=(2, 2) and SNR:(4.3, 5.8). For measurements with noise level σ=10, 
they are∈=(0.89, 0.62),

 
2ˆKLσ =(19,18), KL:(0.1, 0.1), act(∈ )=(1,1) and 

SNR:(2.2, 2.9). For noise level σ=25, they are∈=(3.48, 2.52), 2ˆKLσ =(40, 
40), KL:(0.04, 0.04), act(∈ )=(1, 1) and SNR:(1.1,1.3). For σ=25, the 
mean of the residuals is not close to zero, but considering the means of 
the 10%− and 90%− quantiles, −90 and 47, one sees that the residuals 
still are small.This shows that the approximation with the MSS method 
works well in this model.

The MSS method estimates parameters very well in this example. The 
relative error of the estimation is in the range of the relative error of the 
method proposed in Boys et al. [7], where only one data set is estimated. 
The mean of the residuals is close to zero and the autocorrelation time 
small, compared to the total duration of observations. The signal to 
noise ratio is much better than in the Immigration-Death case. 

Partially observed Lotka-Volterra model

Now assume that only prey can be observed. As in the completely 
observed case simulated data with true parameter (0)θ =(0.5, 0.0025, 
0.3) and 40 observation with Δt=1 is used. Initial condition is again 

(1) (2)
0 0( , )v v =(71,79), but as only prey can be observed, only (1)

0v =71 
will be used for parameter estimation. The optimization variable is now 

(2)
1 2 3 0( , , , )vθ θ θ . Table 3 gives averages and standard deviation for the 

50 estimation results using (2) with K={0}. For each estimation result, 
the relative error is calculated. The estimation performs still quite well, 
even if only one species is observed. The values of the test functions 

Figure 2: Representation of Immigration-Death system’s dynamics 
with MSS method. The blue points are the data points. Blue curves are the 
ODE dynamics for each time interval [ti-1,ti] namely ˆ( , , , )1 1h t v ti iΘ − − with the 
estimated parameter. Red dotted lines show the residuals. 100 simulated 
observations from Immigration-Death model with Θ=(1,0.1) and T=50 for the 
estimation of Θ̂ , dynamics shown until T=25. 
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Estimation Results Rel err

 exact measurements

 Θ1 0.501 ±0.016 2.5%

Θ2 0.00250 ±7·10-5 2.2%

Θ2 0.301 ±0.011 3.1%

 noise: σ=10

 Θ1 0.490 ±0.019 3.2%

Θ2 0.00248 ±9·10-5 2.9%

Θ2 0.302 ±0.012 3.4%

 noise: σ=25

 Θ1 0.454 ±0.031 9.7%

Θ2 0.00243 ±15·10-5 5.2%

Θ2 0.301 ±0.021 5.6%

Table 2: Statistics of the estimation results for Lotka-Volterra model. 50 data 
sets are simulated using the Gillespie algorithm with 40 observations with Δt=1 
and true parameter Θ(0)=(0.5, 0.0025,0.3) and v0=(71,79). For each of the data sets 
an estimation is performed with the MSS method. The table shows a statistic of 
the 50 estimates: Parameter name (column 1), averages of estimates (column 2), 
standard deviation of estimates (column 3) and relative errors (column 4).
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are for exact measurements∈=-0.1,
 

2ˆKLσ =12, KL:0.1, act(∈ )=2 and 
SNR:4.4. For noise with σ=10, they are∈=0.7 2ˆKLσ =20, KL:0.04, act(

∈ )=1 and SNR:2.3. For noise with σ=2 they are ∈=3.1, 2ˆKLσ =19, 
KL:0.04, act(∈ )=1 and SNR:1.1. The residuals are still approximately 
normally distributed as in the fully observed case, see also figure 3.

The same model is used for parameter estimation in stochastic 
models from Boys et al. [7]. For comparison in this article, the same 
true parameter values and initial conditions are used. Although the 
method in Boys et al. [7] is exact the estimate will be a random variable 
depending on the intrinsic noisy data. This is the same in the MSS 
method, which has additionally an approximation error. The relative 
error with the MSS method lies in 2/3 of the cases, below the smallest 
relative error of the methods suggested by Boys et al. [7], who gives one 
estimation result. This shows that the approximation error of the MSS 
method does not influence the estimation accuracy noticeable. 

Calcium Oscillation Model

Third model is a Calcium oscillation model [27] 
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This model shows a qualitatively different behavior between 
stochastic and ODE modeling for small particle numbers as shown 
in Kummer et al. [27]. In this model, the estimation of the transition 
probabilities is challenging due to the large state space.

The ODEs and parameters correspond to reactions and rate laws. 
These are interpreted stochastically using the software COPASI. To 
investigate the behavior of the MSS objective functional (1), 50 data sets 
are simulated from the stochastic model, corresponding to the ODEs 
given in (4) with the Gillespie algorithm using the software COPASI. 

The true parameter and initial conditions were (0)θ =(212, 2.95, 1.52,

190, 4.88, 1180, 1.24, 32240, 29090, 13.58, 153000, 160)

0 0 0( , , )Ca g plc =(10, 10, 10).

Note that for this set of parameters, the system shows irregular 
oscillations with large amplitudes modeled stochastically, but shows 
regular oscillations with small amplitudes modeled with ODEs. 100 
observations were taken with Δt=0.5, which cover about 4 oscillation 
cycles. For all data sets, the objective function (1) is optimized using 
a program implemented in the software Mathematica [33]. Table 4 
gives averages and standard deviation for the 50 estimation results. For 
each estimation result, the relative error is calculated. The estimation 
performs quite successfully. The parameter 2θ which determines the 
oscillatory behavior of the system has very small relative error.

Calculating for one example trajectory, the residuals for all three 
species yields the following numbers for 10%−Quantile, mean and 90%−
quantile: Ca, {−197, −10, 127}; g, {−244, −1, 171}; plc, {−111, −1, 106}. 

The estimated variances are 2ˆKLσ =(178, 187, 83), with a KL divergence 
value of (0.7, 0.2, 0.05). The calculations for the autocorrelation time, 
Ca:1, g:0.5, plc:1, show that these are much smaller than the total 
observation time. The SNR are (10,11,19), which states that the system’s 
dynamic is well represented, see also figure 4, which shows for calcium 
that the residuals (red dotted lines) are small compared to the ODE 
system’s dynamics (blue line). For eg, see supplementary file 1 and 
supplementary file 2.

Estimation Results Rel err

 exact measurements

 Θ1 0.501 ±0.054 8.8%

Θ2 0.0026 ±3·10-4 11.1%

Θ2 0.312 ±0.048 13.4%

 noise: σ=10

 Θ1 0.478 ±0.050 9.3%

Θ2 0.0026 ±3·10-4 10.6%

Θ2 0.318 ±0.045 13.4%

 noise: σ=25

 Θ1 0.430 ±0.070 16.6%

Θ2 0.0028 ±4·10-4 16.8%

Θ2 0.336 ±0.048 16.5%

Table 3: Statistics of the estimation results for partially observed Lotka-Volterra 
model: prey Settings as in Table 2, but only prey can be observed.

Figure 3: Representation of Lotka-Volterra system’s dynamics with 
MSS method. The blue points are the data points. Blue curves are the ODE 
dynamics for each time interval [ti-1,ti] namely ( , , , )1 1h t v ti iθ − − with the estimated 
parameter. Red dotted lines show the residuals. 40 simulated observations 
from partially observed Lotka-Volterra model (prey) with Θ=(0.5,0.0025,0.3), 
T=40 and v0=(71,79) for the estimation of Θ̂ using (2) with K={0}. Dynamics 
shown until T=20.
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The hybrid approach of Mikeev and Wolf [15] would be of interest 
for a comparison. But as the species change the regime from very small 
molecule numbers to relatively high numbers, an automatic switching 
would be required. The MSS method handles this point technically less 
involved. 

Partially observed Calcium oscillation model

Observing g: At first, assume that only g can be observed. As in the 
completely observed case, simulated data with true parameter (0)θ and 
100 observation with Δt=0.5 is used. Initial condition is again (Ca0, g0, 
plc0)=(10, 10, 10), but as only g can be observed only g0=10 will be used 
as data input for the parameter estimation. The system is structurally 
unidentifiable now on a two dimensional manifold. The reason is that 
a multiple of the true amount of Ca0 or Plc0 can be compensated by 
adjusting the parameter values, see supplementary file 3. Therefore, for 
the optimization (Ca0, plc0) is fixed and the optimization problem still 
has 12 optimization variables, although the system is partially observed. 
Table 5 gives averages and standard deviation for the 50 estimation 
results, using (2) with K={0}. For each estimation result, the relative 
error is calculated.

Calculating the averages of the residuals yields, the following 
numbers for 10%−quantile, mean and 90%−quantile: g, {−285,−2.7,270}. 
The estimated variance is 2ˆKLσ =232, with a KL divergence value of 0.07. 
The calculations for the autocorrelation time, g: 0.5, show that these are 
much smaller than the total observation time. Figure 5 shows that the 
system’s dynamic is well represented, SNR is 7.1 which shows that the 
estimation is possible even with only one observed species. 

Observing ca: This situation leads to difficulties. An estimation 
performed with the functional (2) with K={0}, as it is done for g 
observed results for one example, in an estimate of θ̂ =(498, 2.76, 1.57, 
14,1.89, 187, 5.49, 1183, 26244, 34848, 160653, 200) which is far from 
the true parameter. The calculation of the residuals yields as above with 
10%−Quantile, mean and 90%−quantile: ca, {−187, 424, 1552}, which 

seems to indicate a bias. SNR 1.5 and the system’s dynamics are not 
at all represented, see also supplementary file 4. With the knowledge 
of the true parameter, the problem can be identified: For a short time 
interval, the system’s dynamics are well represented, but then due to 
the development of the unobserved species, it is not well represented 
any longer, see figure 6. Hence, in this case, it is better to enlarge the 
optimization vector and use functional (2) with K={0,5,10,…,45}, 
which means that also unobserved states at other time points than 

true param Estimation Results Rel err

 Θ1 212 210 ±51 18.1%

Θ2 2.95 2.95 ±0.03 0.79%

Θ3 1.52 1.52 ±0.02 1.06%

 Θ4 190 197 ±76 27.56%

Θ5 4.88 4.88 ±0.34 5.83%

Θ6 1180 1198 ±829 57%

 Θ7 1.24 1.24 ±0.01 0.58%

Θ8 32240 32735 ±1518 3.4%

Θ9 29090 29849 ±2270 5.21%

 Θ10 13.58 13.56 ±0.38 2.20%

Θ11 153000 152754 ±4439 2.30%

Θ12 160 161 ±7 3.09%

Table 4: Statistics of the estimation results for fully observed Calcium 
oscillation model. 50 data sets are simulated using the Gillespie algorithm with 100 
observations with T=50 for the Calcium oscillation model, (Ca0,g0,plc0)=(10,10,10). 
For each of the data sets an estimation is performed with the MSS method. The 
table shows a statistic of the 50 estimates: Parameter name (column 1), true 
parameter (column 2), averages of estimates (column 3), standard deviation of 
estimates (column 4) and relative errors (column 5).

Figure 4: Representation of Calcium oscillation system’s dynamics 
with MSS method. The blue points are the data points. Blue curves are the 
ODE dynamics for each time interval [ti-1,ti]  namely ( , , , )1 1h t v ti iθ − − with the 
estimated parameter. Red dotted lines show the residuals. 100 observation 
from fully observed Calcium oscillation model with T=50 for the estimation of
Θ̂, dynamics shown until T=20. 
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true param Estimation Results Rel err

 Θ1 212 293 ±100 52%

Θ2 2.95 2.97 ±0.05 1.8%

Θ3 1.52 1.88 ±0.6 36%

 Θ4 190 410.6 ±178 123%

Θ5 4.88 4.86 ±0.67 10.7%

Θ6 1180 1610 ±1332 86%

 Θ7 1.24 1.10 ±0.39 28.4%

Θ8 32240 48216 ±11676 51%

Θ9 29090 56510 ±17299 94%

 Θ10 13.58 14.26 ±1.67 10.3%

Θ11 153000 160625 ±18698 10.3%

Θ12 160 167.0 ±29.7 15.4%

Table 5: Statistics of the estimation results for partially observed Calcium oscillation 
model: g Settings as in Table 4, but only g observed.
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zero are included in the optimization vector. The results show that an 
estimation is possible with this functional, see table 6.

Now, the situation has improved. Averages of the test functions: 
10%−quantile, mean and 90%−quantile of the residuals are 

(−1997,162,1214). The estimated variance is 2ˆKLσ =1823, with a KL 

divergence value of 0.67. The autocorrelation time is 1.16 and the SNR 
is 1.7. Figure 7 shows that the system’s dynamic is well represented. 
This example is highly important, as it shows that the short time ODE 
integration method can still be used, if the system’s behavior is very 

different in ODE modeling or stochastic modeling. The method is even 
applicable to partially observed models. 

Discussion
The article presents a method for parameter estimation in 

stochastic models, based on short time ODE integration. The method is 
able to estimate parameters, even in models which behave qualitatively 
different in stochastic modeling than in ODE modeling [27]. The data 
which is used as input for the method is a single stochastic trajectory, 
which might be well different from the mean behavior or other stochastic 
realizations. The advantage of the objective function is that it does not 
need stochastic simulations, nor a solution of a high dimensional CME, 
which increases its speed. Hence, it is well applicable in larger realistic 
size models which would be very time consuming in simulations based 
methods.

For the numerical optimization, this allows the user to choose 
between various numerical optimization methods, such as derivative 
based methods, global optimization techniques or Bayesian methods. 
As these are well established techniques, the article restricts its focus to 
the objective function. To test this objective function, it was optimized 
for three different examples. A more rigorous analysis including the 
calculation of confidence intervals and experimental design would 
be desirable and is planned for further research. This article focuses 
on the impact of the stochasticity of the models, and its influence on 
the estimation. The approximation with an ODE model on a short 
time interval is not a restriction for applicability, as the test functions 
show that the approximation works, even in models with qualitatively 

Figure 5: Representation of partially observed Calcium oscillation 
system’s dynamics, g. The blue points are the data points. Blue curves are 
the ODE dynamics for each time interval [ti-1,ti]  namely ( , , , )1 1h t v ti iθ − − with 
the estimated parameter. Red dotted lines show the residuals. 100 observation 
from from partially observed Calcium oscillation model (g) with T=50 and 
v0=(10,10,10) for the estimation of Θ̂ using (2) with K={0}. Dynamics shown 
until T=20.
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true param Estimation Results Rel err

 Θ1 212 145.4 ±115.1 56.2%
Θ2 2.95 3.06 ±0.39 9.9%
Θ3 1.52 1.49 ±0.22 11.5%
 Θ4 190 212.3 ±200.5 76.5%
Θ5 4.88 7.85 ±5.58 70.4%
Θ6 1180 1944 ±2405 144.4%
 Θ7 1.24 1.48 ±0.20 21.7%
Θ8 32240 33860 ±8578 20.9%
Θ9 29090 23670 ±6278 23.7%

 Θ10 13.58 15.12 ±5.55 24.3%
Θ11 153000 161206 ±22965 13.0%
Θ12 160 101 ±56.9 43.0%

Table 6: Statistics of the estimation results for partially observed Calcium 
oscillation model: ca Settings as in Table 4, but only ca observed.

Figure 6: Representation of partially observed Calcium oscillation 
system’s dynamics, ca. The blue points are the data points. Blue curves 
are the ODE dynamics for each time interval [ti-1,ti] namely ( , , , )1 1h t v ti iθ − −

with the true parameter. Red dotted lines show the residuals. 100 observation 
from partially observed Calcium oscillation model (ca) with T=20 using (2) with 
K={0}. 
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different behavior in stochastic modeling than in ODE modeling. For 
that it is important that the approximation is only done on a short time 
interval. In models with very few reactions per time interval, such as 
the Immigration-Death model, the signal to noise ratio is bad, so that 
many observations are necessary. But in many realistic models, it is 
not possible to measure fast enough to capture every single reaction, 
so this fact does not reduce the applicability of the method much. 
The MSS method proposed in this article performs very well, even in 
oscillatory system such as Lotka-Volterra or the Calcium oscillation 
model, in which a larger state space makes other approaches more time 
consuming.

Instead of using the solution of the initial value problem of the 
ODE system in (1), one could also use the mean of the stochastic 
simulations-hence the first moment-which could be calculated with a 
moment-closure [13], with only the first moment. Although calculating 
the moment-closure should be fast compared to other calculations, this 
would be slightly slower than the suggested method. The models in the 
results section suggest that it is in many cases not necessary. If it would 
be more stable, especially in cases of partially observed models, still 
has to be investigated. The results for the Immigration-Death model 
suggest that the method yields an unbiased result compared to an exact 
analytical estimation, if there are enough measurements. The standard 
deviation seems to be slightly higher. Compared to a stochastic 
approach by [8], the suggested method performed well: the results 
for sample data sets were more accurate in 80% of the 50 sample data 
sets, which still might be due to the stochastic effects as [8], provided 
a single data set. The case of table 1A, in which the method is biased 

Figure 7: Representation of partially observed Calcium oscillation 
system’s dynamics, ca. The blue points are the data points. Blue curves are 
the ODE dynamics for each time interval [ti-1,ti] namely ( , , , )1 1h t v ti iθ − − with the 
estimated parameter. Red dotted lines show the residuals. 100 observations 
from partial observed Calcium oscillation model (ca) with T=50 for the 
estimation of Θ̂ using (2) with K={0,5,…,45}. Dynamics shown until T=20. 
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is a situation when only very few reactions happen per time interval, 
between two points of measurements. This is in reality generally not the 
case. If the systems which is under investigation has that behavior, it is 
suggested to use CME based methods, which should work fast in that 
case due to the very small state space.

The benefit of the MSS method using the measurement points as 
initialization for the next interval is that it resolves the identifiability 
problem, which is present in this scenario of the Immigration-Death 
model, using traditional ODE methods.

The results of the Lotka-Volterra model show that the method is 
well able to provide estimates for fully and partially observed models, 
comparable to the accuracy of methods using simulations [7]. 

The Calcium oscillation model was a very important test case as 
the method showed good performance in estimating the parameters, 
although the system’s behavior is completely different in stochastic and 
deterministic modeling. For the partially observed case, the amount 
of information depends on the question which species is observed. 
Observing g the estimation is possible; observing only ca, the objective 
function has to be modified to (2) with K={0,5,…,45}.

The examples show that although the Maximum Likelihood 
property of the method is theoretically lost, the estimation is still 
quite precise. The proposed test functions work fine as they identify 
those situations, which lead to a bias and “accept” the others. This 
argumentation also allows for the extension to the case of measurement 
noise, in which even data points with negative resulting negative 
molecule counts can be used. An example with measurement noise is 
given for the Lotka-Volterra example.

To conclude the article, presents a method for parameter 
estimation for stochastic models. The method is based on short time 
ODE integration. It is shown that the approach exhibits the desirable 
properties mentioned in the introduction, that makes it applicable to 
realistic problems in systems biology: it works in models which behave 
qualitatively different in stochastic modeling than in ODE modeling. 
It is able to cope with partially observed models with measurement 
noise. As the method is deterministic and works without stochastic 
simulations, it is computationally efficient.

Points for future research are confidence intervals for the 
parameters, as well as optimum experimental design. The first is crucial 
for the quality assessment of the estimates, and the second helps in 
saving experimental cost, whilst increasing the estimation accuracy.
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