Immune Response Profile in Susceptibility and Protection in Visceral Leishmaniasis

Jacqueline A Fiuza and Soraya T Gaze*

Cellular and Molecular Immunology Group, Rene Rachou Institute, Oswaldo Cruz Foundation, Brazil

*Corresponding author: Soraya T Gaze, Cellular and Molecular Immunology Group, Rene Rachou Institute, Oswaldo Cruz Foundation, Brazil, E-mail: soraya.gaze@minas.fiocruz.br

Received date: July 04, 2018; Accepted date: August 15, 2018; Published date: August 20, 2018

Abstract

Among the clinical forms of leishmaniasis, visceral leishmaniasis is the most debilitating clinical form because it compromises mainly liver and spleen in the host. The immune response against the parasite and immune factors relating to protection or susceptibility are not well established. Experimental models and natural infection in dogs also have different patterns to human disease. In the scientific community, many groups are developing different strategies to find an effective vaccine that could be used in dogs, and/or human in the future, with success. The vaccine to leishmaniasis, together with other sanitary strategies, could decrease the infection rates in endemic countries. Here, it is presented a review of the last studies focusing in a vaccine against visceral leishmaniasis.

Keywords: Leishmaniasis; Fever; Hematemesis

Introduction

Visceral leishmaniasis (VL), caused by the parasites Leishmania donovani and L. infantum, is endemic in 65 countries. The disease affects more than 200,000 people per year, with high case-fatality rates if not treated [1].

Human VL is characterized by long-term irregular fever, splenomegaly, hepatomegaly, lymphadenopathy, anemia, leukopenia, edema, epistaxis, hypergammaglobulinemia, hematemesis, weight loss and progressive weakness [2]. VL is considered to be the second most frequent cause of mortality and the fourth most frequent cause of morbidity in tropical diseases, with 20,000 to 40,000 deaths per year [1] and over 2 million years of Disability-Adjusted Life Years (DALYS) [3]. In addition, it is speculated that epidemiological data are underestimated, since clinical manifestation does not necessarily represent the absolute number of occurrences. For example, for each symptomatic case detected, there is estimation that there are, at least 6 to 20 asymptomatic infections [4]. In addition, the infection with Leishmania has gained attention as an opportunistic pathogen in HIV positive and other immunocompromised patients [5].

Among the factors that lead to the search for new alternatives to control VL are the development of resistant strains of the standard drug [6,7], toxicity of treatment and its inefficiency in patients co-infected with HIV virus [6,8] to the increased incidence in immunocompromised patients and the difficulties in control based on the elimination of seropositive dogs [9]. The gold standard would be a highly efficient vaccine against the parasite. However, no human vaccine is available at the moment. For veterinary use, there are three commercially available. One in Brazil based on recombinant A2 protein plus saponin-(Leishtec) [10]. The second licensed in Europe, composed of purified excreted-secreted proteins of Leishmania infantum (LiESP), using a highly purified fraction of the Quillaja saponaria saponin as adjuvant (Canileish) [11]. The third, also licensed in Europe, is composed of 4 proteins (3 ribosomal and 1 hypothetical), using no adjuvants (Letifend) [12].

The host immune response has an important role in protection/susceptibility in the course of Leishmania infection, besides the persistence and multiplication of the parasite. In the other hand, parasite exhibits different strategies to manipulate cell death and immune system to survive to establish infection [13]. The understanding of the mechanisms associated with immune evasion and disease progression is essential for the development of novel therapies and vaccine approaches. Here, we revise the immune response profile in natural and experimental infection by Leishmania infantum/Leishmania donovani, also after different vaccination approaches.

Immune Response in Experimental Infection

The events that occur after the inoculation of Leishmania sp. are essential to the course of the infection, and the involvement of the immune system is present by the complement system, polymorphonuclear neutrophils, natural killer cells (NK), macrophages, growth factors such as colony stimulating factor (GM-CSF) and (TGF-β), and [14,15]. In general, these elements are activated in an attempt to contain the infection, either by enhancing the innate immune response by chemotaxis of more cells, or by the activation of the adaptive immune response. Because it is an intracellular parasite, the adequate immune response to Leishmania involves the activation of the microbicidal mechanisms of infected cells, especially macrophages, resulting mainly in the production of molecules such as reactive oxygen (ROI) and nitrogen intermediates (RNI) [16,17].

Among the mechanisms involved in mammalian host protection against Leishmania infection, the development of Th1 immunity is crucial because triggers enhanced leishmanicidal activity by infected macrophages. In general, as demonstrated in murine model, protection against infection is attributed to the development of the cellular immune response triggered by CD4+ Th1 T cells, characterized by the production of IL-12 and IFN-γ, which mediate the activation of...
macrophages, and nitric oxide production and consequently elimination of the parasite [18-23].

Immunopathogenesis of VL has been extensively studied in murine models of systemic infection. Genetically susceptible animals, such as BALB/c and C57BL/6 mice, infected with L. donovani or L. infantum, intravenously or intraperitoneally, present visceral parasitism. In the liver, amastigotes multiply rapidly during the first four weeks, but are soon controlled by the formation of inflammatory granulomas. Infected Kupffer cells produce chemokines (CCL2, CCL3, CCL19, CCL21 and CXCL10) capable of recruiting neutrophils, monocytes and T cells that are indispensable in the formation of the granuloma. Neutrophils, in addition to eliminating the parasite, induce the polarization of the immune response to the Th1 pattern. CD4+ T lymphocytes start to produce IL-12, which enhances the inflammatory response in granuloma among with production of IFN-γ, TNF-α and lymphotoxin α (LTα). These cytokines, in addition to increasing the recruitment of cells to structure the granuloma, activate the leishmanicidal mechanisms of infected cells producing reactive oxygen and nitrogen species and, in approximately eight weeks, liver infection is controlled [24,25].

In the spleen, multiplication of the parasite is late, but persistent compared to liver. Initially, IL-12 production is observed by dendritic cells migrating from the marginal zone to the perarteriolar zone in order to activate effector lymphocytes. However, this mechanism does not seem to be efficient in infection control, since the infection persists after several weeks and an enlargement of the spleen and changes in the splenic tissue are observed. This remodeling of the spleen is accompanied by an increase in the production of TNF-α which intensifies the depletion of macrophages and cells of the perarteriolar zone, responsible for the release of CCL19 and CCL21, important in the migration of dendritic cells to the activation zone of effector T lymphocytes. In these models, IL-10 appears to be directly involved in parasite multiplication, since mice deficient in IL-10 production have infection controlled. It is suggested that IL-10 alters the expression of PD-1 (programmed death) and its ligand (PD-L1), inhibiting cytokine production and T-cell proliferation. IL-10 production can be induced by IL-27 and IL-21 via activation of Tr1 cells [24,25]. It was observed that mice deficient for the IL-27 receptor are resistant against infection by L. donovani, but develop severe liver lesions [26].

In different models, some studies have shown the hostile effect of the leishmaniasis, induced by B cells [27-30]. In experimental VL, disease exacerbation is contributed by B cells. Smelt and collaborators (2000) demonstrated that B cell-deficient mice are highly resistant to L. donovani infection. However, B cells contribution to infection is not well known. But it seems that Leishmania infection could induce a production of short-lived Leishmania-specific IgG, and it decreases during chronic phase, suggesting that most antibodies produced are not specific for the parasite [31].

Immune Response in Infected Patients

Although endemic, less than 10% of the individuals infected by L. donovani or L. infantum present the classic form of VL. The majority of people who become infected with visceralizing Leishmania spp. never develop disease. The two groups (asymptomatic and symptomatic) are targets of studies in an attempt to understand the immunological dynamics of the disease. Looking only at serological parameters, it has been observed the presence of several mediators of the immune response during the active form of the disease, the cytokine storm. Several studies report high serum levels of cytokines type 1 (IFN-γ and IL-12), type 2 (IL-4 and IL-13), Treg (IL-10 and IL-6), Th17 and TNF-α when compared with asymptomatic individuals [32-34]. After treatment, these levels of cytokines are similar to those of asymptomatic and healthy individuals. The clinical presentation of VL seems to be a consequence of the interaction parasite and the immune response developed by the host [35]. Thus, the outcome of infection would depend on the parasite’s ability to evade non-specific defences of the host, to be recognized and phagocytosed, and survive within the phagocytes vacuole of macrophages [36]. During parasite-host interaction, complex signaling pathways are triggered by recognition of key parasite molecules [37]. Differences in virulence factors between species are responsible for the different clinical forms observed in leishmaniasis [38]. Protective immunity in leishmaniasis is mediated by the cellular immune response while the active disease is associated with a strong humoral response with absence of cellular response [38]. The control of infection is complex and the parasite is able to evade pro-oxidative responses and other macrophage effector mechanisms preventing the activation of a response [37,39].

Thus, the T cells and their producing cytokines play a central role in the immune response [40]. Parasitic macrophages, lymphocytes, dendritic cells and natural killers produce cytokines that are involved in both innate and adaptive responses to the parasite [22,41]. CD4+ and CD8+ T cells are important to restrain visceral disease and are involved with the production of IL-2, IFN-γ and IL-12 [42].

In contrast, if intense proliferation of B lymphocytes and the production of antibodies are abundant, the immune response is deleterious and non-protective for VL [43]. Therefore, the cellular immune response mediated by Th2 cells is associated with susceptibility, resulting in parasite persistence and infection progression (Kedzierski et al.). In VL, there is evidence of the predominance of Th2 cellular immune response during acute disease, leading to suppression of cellular reactivity against parasite antigens, absence of IL-2 and IFN-γ, predominance of IL-4 cytokine production and to polyclonal activation of B cells resulting in hypergammaglobulinemia [44-47]. Unlike the polarization observed in murine models, a distinct Th1 and Th2 response pattern is not detected in human VL. In this case, the mixed Th1/Th2 immune response is observed during the course of infection, indicated by the high simultaneous levels of IFN-γ and IL-10 in patients with the disease [48,49]. In VL, there is still no clear association between IL-4 production and active disease [50], but a direct correlation between IL-10 levels and disease progression has been described [46,51-56].

The cytokine IL-10 is indicated as the key factor of immunosuppression in VL. This fact is based on studies using murine model mainly, IL-10-deficient BALB/c and C57BL6 mice are highly resistant to L. donovani infection [53,57]. IL-10 has the ability to deactivate the leishmanicidal mechanisms of the macrophage and to down regulate the expression of MHC and co-stimulatory molecules [54,58,59]. It also decreases the production of IFN-γ by T cells and inhibits DC migration to T cell areas [60-63]. Therefore, the evolution of the disease may be induced by IL-10 and it can condition host macrophages to increase parasite survival and replication, since this cytokine renders macrophages non-responsive to activation signals and inhibits the killing of parasites, by down regulating the production of nitric oxide and TNF-α [54,64-66]. However, there are some evidence suggesting that IL-10 may be host protective; particularly, in regulating a detrimental inflammatory response in the liver. Indeed,
the extensive hepatic necrosis accompanying *L. donovani* infection in TNF-deficient mice may result from a concomitant defect in IL-10 induction [26,67]. Likewise, the severe hepatic pathology that follows *L. donovani* infection in IL27R−/− mice involves CD4+ T cells and may result from reduced IL-10 induction [26,68].

Studies in patients confirm the efficacy of IFN-γ and IL-12 mediated Th1 immune response to the elimination of *Leishmania*, to the detriment of Th2 IL-4 and IL-13 mediated immune response [41,45,69-71]. In classical VL, an absence of IFN-γ and IL-2 production in response to soluble *Leishmania* antigens is observed *in vitro* [72]. This suppression is restored when anti-IL-10 is added, suggesting the negative modulatory role of this cytokine [73]. Indeed, individuals with the active form of VL have elevated serum levels of various cytokines, called "cytokine storm", including IFN-γ and IL-10 [32,34,49,71,74-79]. Over time, other cytokines have been shown to regulate the immune response, as IL-6, IL-21 and IL-27 [74,80,81]. However, several aspects of this immune response in VL are still unclear.

The factors that influence susceptibility to VL remain an area of intense interest but are still largely a matter of speculation. As mentioned, many of the cytokines measured at elevated levels in VL patients indicate that the immune system responds appropriately but that other factors render these responses inadequate to contain the infection effectively. In addition, VL mostly affects populations in poor countries, where malnutrition or/and co-infection with helminthes or other organisms might be common, especially in rural area. It is demonstrated that low nutritional status can impair both innate and adaptive immune response [82,83]. In addition, co-infection with helminthes alters the Th1/Th2 balance, supporting *Leishmania* infection [84,85]. Also, it is demonstrated that testosterone induces parasite replication, resulting in more infected men with VL than women. This could suggest that hormone could induce or interfere in the susceptibility in this gender [54,86-88].

Immune Response in Infected Dogs

In Canine visceral leishmaniasis (CVL), cell-mediated immunity is able to control infection, and correlates with the absence of symptomatology [89-91], while the lack of this response has been associated with the presence of an exacerbated humoral response allowing the progression of the disease [92,93].

Illustratively, the positive skin test (late hypersensitivity reaction) for *Leishmania* spp. in dogs is a good indicator of resistance to infection, and can be used as a prognostic factor [94,95].

The mechanisms of cellular immune response in the natural infection canine leishmaniasis are different from those found in models where the classical Th1/Th2 response paradigm is associated with resistance or susceptibility [96]. Although not following the classic paradigm, some studies associate asymptomatic infection in dogs with the activation of Th1 cells that produce IFNγ, IL-2 and TNFα [89,91]. Furthermore, the cytokine profile in blood cell culture (PBMC) of infected asymptomatic dogs experimentally with *L. infantum*, shows predominantly Th1 response, mediated by expression of IL-2, IFNγ and IL-18, but absence of IL-4 expression [35]. In this way, the parasites are killed by macrophages activated by lymphocytes producing IFNγ through a mechanism dependent on nitric oxide production [97]. However, there is evidence that IFN-γ increases in the early stages of infection but is not sufficient to prevent disease and that levels increase as a consequence of infection, regardless of clinical symptomatology [97,98].

Both asymptomatic and symptomatic dogs are able to produce cytokines from Th1 and Th2 profiles, and these profiles can coexist in CVL [99]. Thus, studies on the expression of cytokines in CVL have conflicting results that may be related to the compartmentalization of the response in the different tissues evaluated. Alves et al. [100] demonstrated the gene expression of IFN-γ and TNF-α in asymptomatic dogs and IL-10 and TGF-β in symptomatic dogs. The association of parasite load, clinical evolution, gene expression and synthesis of certain cytokines such as IFNγ, IL-2, IL-6, IL-10 and IL-12 has already been demonstrated [91,101-104]. Another study showed that increased IL-4 gene expression in peripheral blood mononuclear cells after six months of infection was quantitatively similar in both asymptomatic and symptomatic dogs [105]. In symptomatic dogs infected with *L. infantum*, no correlation was found between serum TNF-α level and active disease [102]. Unlike human and murine leishmaniasis, in CVL no difference was observed between levels of IL-10 in the tissues and the expression of IL-4 in the bone marrow of naturally infected dogs, especially those most severely affected, suggests an association between IL-4 and disease [97]. However, when analyzing the relationship between skin parasite density and the expression of mRNA for IL-10 in skin, it is observed a positive correlation between high burden and IL-10 expression [106]. In summary, the immunological mechanisms responsible for the resistance or progression of CVL and the detection of cytokine synthesis and its association with *L. infantum* infection are still controversial.

The understanding of the role of Th1 and Th2 subpopulations in the different tissues is crucial to comprehend the profile of immune response induced by the infection. In fact, the immune response to the parasite is not identical in any host system, but organ-specific [107]. The liver is the site of resolution of the acute infection, exhibits minimal tissue damage and resistance to reinfection, whereas the spleen becomes a site of persistence of the parasite as evidenced in a murine model of infection [67].

The spleen is among a major organ affected in CVL and is largely responsible for the immune response to infection, but the knowledge of the immunopathological mechanisms involved is limited, with most studies focused on the murine model of experimental infection. It is an important secondary large-volume lymphoid organ with primary function of responding to systemic pathogens [108]. The lymphoid tissue is highly organized and the disorganization of the splenic architecture in dogs with VL has been associated with the progression of the disease and the reduction of the expression of several chemokines and their receptors [109]. The mRNA levels of a wide variety of cytokines (IFNγ, TNFα, IL-4, IL-5, IL-10, IL-12, IL-18, TGFβ), transcription factors (Tbet and GATA3), and chemokines (IP-10, RANTES, MIP-1α, MCP-1) were evaluated in the spleen of naturally and experimentally infected dogs [99,110]. It has been suggested that during *L. infantum* infection, a Th1/Th2 mixed response occurs in the spleen of symptomatic and oligosymptomatic dogs, insufficient to control the parasite locally. The authors showed that the high expression of IFN-γ in the spleen did not eliminate the parasites completely, since a new parasite load from other sites, where IFN-γ is not elevated, is constantly released into the spleen [111].

One of the most relevant organs involved in the parasite-host interface during *L. infantum* infection is the hepatic compartment. Few studies have quantified the production of cytokines and
chemokines in the liver of infected dogs. The mRNA levels of CCL1, CCL17, CCL26, CCR3, CCR4, CCR5, CCR6 and CCR8 were higher in asymptomatic dogs as well as the synthesis of IFN-γ, IL-10 and TGF-β1 [99,112]. On the other hand, it seems that the infection alone causes an increase in the synthesis of IL-4 and IL-10 in the liver, independent of symptomatology, with increased TNF-α level in symptomatic dogs, which was not observed in the spleen. In addition, the parasite burden of the liver is lower than in the spleen [113]. In the liver, the presence of granulomas, in different degrees of maturation in infected dogs, is a reaction of this organ to try to control the proliferation of parasites, and in the murine model TNFα is involved in the formation of hepatic granulomas [67,114]. The presence of granulomas is also observed in human VL and CVL [115].

Immune Response Profile after Different Vaccination Approaches

The control of LV is dependent of early diagnosis, treatment of infected individuals, and control of vectors and outbreaks in domestic reservoirs [2]. These measures together could eliminate or drastically reduce transmission [116,117] when used over a long period of time [118]. However, the number of available drugs is limited, most overpriced, have toxic side effects or prove ineffective due to co-infection with HIV or induce emergence of resistant strains. In addition, the vector control methods available are not so efficient. Therefore, vaccination is the most effective method for the control of zoonotic LV. The application of an effective vaccine in human/dogs can also drastically reduce the transmission of *L. infantum* [119]. The development of vaccines against human and canine infection has been the target of many research groups [50,61,120,121].

It has been demonstrated that the treatment of *Leishmania* infection confers a strong immunity against reinfection in cutaneous species [47,122], the partial protection observed in animal models after immunization with different recombinant or crude antigens [50,123,124] and protection against infection resulting from the leishmanization process [125]. However, despite the extensive search for vaccine development against leishmaniasis in recent decades, no vaccine against human leishmaniasis, whether cutaneous or visceral, is available for prophylactic use.

Between the different methodologies, the vaccination approaches include killed or live attenuated *Leishmania* parasite (first generation), recombinant *Leishmania* proteins (second generation), DNA encoding *Leishmania* proteins (third generation), and immunomodulators [61,126-128]. Here is tabulated the available immunization studies according to the animal model and the protection observed (Table 1).

<table>
<thead>
<tr>
<th>Immunization</th>
<th>Animal model</th>
<th>Profile of immune response</th>
<th>Protection</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td><i>L. major</i> antigens+BCG</td>
<td>Clinical trial</td>
<td>-</td>
<td>Partial protection</td>
<td>[129]</td>
</tr>
<tr>
<td><i>L. major</i> antigens+BCG</td>
<td>Dogs</td>
<td>-</td>
<td>Partial protection</td>
<td>[130]</td>
</tr>
<tr>
<td><i>L. braziliensis</i>+BCG</td>
<td>Dogs</td>
<td>Cell proliferation and IFN-γ production</td>
<td>Partial protection</td>
<td>[131]</td>
</tr>
<tr>
<td>Leish 111 (LeIF+TSA+LmSTI1)+MPL</td>
<td>Dogs</td>
<td>IgG1 and IgG2 production</td>
<td>-</td>
<td>[132]</td>
</tr>
<tr>
<td>MML</td>
<td>Dogs</td>
<td>-</td>
<td>5/8 protected dogs</td>
<td>[133]</td>
</tr>
<tr>
<td>H1, HASPB1, H1+HASPB1</td>
<td>Dogs</td>
<td>Antibody response</td>
<td>Partial protection</td>
<td>[133]</td>
</tr>
<tr>
<td>Protein Q chimera+BCG</td>
<td>Dogs</td>
<td>DTH response</td>
<td>Protection</td>
<td>[134]</td>
</tr>
<tr>
<td>Multicomponent LBSap vaccine</td>
<td>Mice</td>
<td>Humoral and cellular response</td>
<td>Partial protection</td>
<td>[135]</td>
</tr>
<tr>
<td>LBSap Sal</td>
<td>Dogs</td>
<td>NO and Th1 cytokines response</td>
<td>Protection</td>
<td>[136]</td>
</tr>
<tr>
<td>LBSap</td>
<td>Dogs</td>
<td>Cell proliferation, IFN-γ production</td>
<td>Protection</td>
<td>[137,138]</td>
</tr>
<tr>
<td>pCI-neo-LACK+MVA or M65</td>
<td>Human PBMC, Hamsters</td>
<td>Th1-type response</td>
<td>Protection</td>
<td>[139]</td>
</tr>
<tr>
<td>rA2+Alum+CPG</td>
<td>Mice</td>
<td>High IgG, IgG1, IgG2, IFN-g and IL-10</td>
<td>82% decrease spleen</td>
<td>[140]</td>
</tr>
<tr>
<td>CL-14 (Trypanosoma cruzi CL-14 non-virulent strain)+A2</td>
<td>Mice</td>
<td>Th1 responses with enhanced IFN-, IL-12, nitric oxide,</td>
<td>Protection</td>
<td>[141,142]</td>
</tr>
<tr>
<td>IgG2a/IgG1 ratio and reduced IL-4 and IL-10</td>
<td>Mice</td>
<td>IgG2a/IgG1 ratio and reduced IL-4 and IL-10</td>
<td>IgG2a/IgG1 ratio and reduced IL-4 and IL-10</td>
<td>[141,142]</td>
</tr>
<tr>
<td>Th1 responses with enhanced IFN-γ, IL-12, nitric oxide,</td>
<td>Mice</td>
<td>High IFN-g, IL-12, NO, IgG2/IgG1 ratio</td>
<td>Protection</td>
<td>[141,142]</td>
</tr>
<tr>
<td>IgG2a/IgG1 ratio and reduced IL-4 and IL-10</td>
<td>Mice</td>
<td>Low IL-10, IL-4</td>
<td>Low IL-10, IL-4</td>
<td>[141,142]</td>
</tr>
</tbody>
</table>
responses

- **Th1 responses with enhanced IFN-γ, IL-12, nitric oxide, IgG2a/IgG1 ratio and reduced IL-4 and IL-10 responses**
- **gp63**
- **gp63+HSP70 DNA**
- **Proteophosphoglycan**
- **KMP-11**
- **Amastigote gene**
- **KMP-11+Ljm19**
- **Centrin deleted live parasite L. donovani**
- **Ascorbic acid-deficient live mutants of L. donovani**
- **p27 gene knockout L. Donovanii parasites**
- **L. major (ALM)+BCG**
- **KBMA L. infantum and L. chagasi**
- **Leishmune (FML)**
- **Leish F1**
- **Leish 111f+MPL**
- **HASPB1**
- **rSMT**
- **A2**
- **LD91+LD72+ LD51+LD31**
- **TRYP**
- **ORFF**
- **LPg 3**
- **LEISHDNAVAX**

Table 1: Immunization studies to VL according to animal model, immune response profile and protection

<table>
<thead>
<tr>
<th>Study</th>
<th>Model</th>
<th>Response Profile</th>
<th>Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>gp63</td>
<td>Mice</td>
<td>High IFN-γ</td>
<td>- [143]</td>
</tr>
<tr>
<td>Proteophosphoglycan</td>
<td>Hamsters</td>
<td>NO and pro inflammatory cytokines</td>
<td>80% of protection [144]</td>
</tr>
<tr>
<td>KMP-11</td>
<td>Mice/Hamsters</td>
<td>CD4+ and CD8+ T cells producing IFN-g, IL-12, TNF-a</td>
<td>Protection [145-148]</td>
</tr>
<tr>
<td>Amastigote gene</td>
<td>Mice</td>
<td>IgG, pro inflammatory cytokines</td>
<td>- [149]</td>
</tr>
<tr>
<td>KMP-11+Ljm19</td>
<td>Hamsters</td>
<td>High IFN-γ/IL-10</td>
<td>Protection [147]</td>
</tr>
<tr>
<td>Centrin deleted live parasite L. donovani</td>
<td>Mice, hamsters, dogs</td>
<td>High IFN-g, IL-12, TNF-a, IgG, IgG1, IgG2, T cell proliferation</td>
<td>Protection [150-154]</td>
</tr>
<tr>
<td>Ascorbic acid-deficient live mutants of L. donovani</td>
<td>Mice</td>
<td>T cell proliferation, pro inflammatory cytokines</td>
<td>Protection [155]</td>
</tr>
<tr>
<td>p27 gene knockout L. Donovanii parasites</td>
<td>Mice</td>
<td>T cell proliferation, pro inflammatory cytokines, NO</td>
<td>Protection [156]</td>
</tr>
<tr>
<td>L. major (ALM)+BCG</td>
<td>Mice</td>
<td>Antibody production, DTH response</td>
<td>Protection [125]</td>
</tr>
<tr>
<td>KBMA L. infantum and L. chagasi</td>
<td>Mice</td>
<td>Th1 cytokine pattern</td>
<td>Partial protection [157]</td>
</tr>
<tr>
<td>Leishmune (FML)</td>
<td>Mice, dogs</td>
<td>High lymph proliferative response and IgG2 production</td>
<td>Partial protection [158]</td>
</tr>
<tr>
<td>Leish F1</td>
<td>Clinical trial</td>
<td>Th1 response</td>
<td>Safe [159]</td>
</tr>
<tr>
<td>Leish 111f+MPL</td>
<td>Clinical trial</td>
<td>Th1 response</td>
<td>Protection [160]</td>
</tr>
<tr>
<td>HASPB1</td>
<td>Mice</td>
<td>Th1 response</td>
<td>Protection [161]</td>
</tr>
<tr>
<td>rSMT</td>
<td>Mice</td>
<td>Th1 response</td>
<td>Protection [162]</td>
</tr>
<tr>
<td>A2</td>
<td>Mice</td>
<td>High IFN-γ production</td>
<td>Protection [163]</td>
</tr>
<tr>
<td>LD91+LD72+ LD51+LD31</td>
<td>Mice</td>
<td>High pro inflammatory cytokines production</td>
<td>Protection [164]</td>
</tr>
<tr>
<td>TRYP</td>
<td>Mice</td>
<td>IgG and IgG2 production</td>
<td>Partial protection [165]</td>
</tr>
<tr>
<td>ORFF</td>
<td>Hamsters</td>
<td>IFN-γ and IL-12 production</td>
<td>Partial protection [166]</td>
</tr>
<tr>
<td>LPG 3</td>
<td>Mice</td>
<td>Mixed Th1/Th2 response</td>
<td>Partial protection [167]</td>
</tr>
<tr>
<td>LEISHDNAVAX</td>
<td>Mice</td>
<td>IgG production</td>
<td>Partial protection [168]</td>
</tr>
</tbody>
</table>

Conclusions

The pattern of immune response is well studied in murine and human, whose Th1/Th2 paradigm is well established. In the murine model of leishmaniasis, Th1 cells secrete IL-2, IFN-γ and TNF-a and are associated with resistance and infection control, whereas Th2 cells secrete IL-4 and IL-10, and are responsible for the susceptibility and progression of the disease. In human VL, the immune response Th2 is represented by the low synthesis of IFNγ and by the increase of IL-4 levels. In addition, IL-10 has been indicated as one of the major cytokines suppressors of the protective immune response, both in murine models and in human VL. Although some evidence demonstrates the feasibility of vaccination against leishmaniasis, the differences among the host species and the organs affected by the disease creates difficulties to develop a broad vaccine [169-177]. Those particularities still need more studies and a better understanding to develop a well-established vaccine to VL.

References

45. Perumpe-Magalhães V, Filho OA, Prata A (2006) Mixed inflammatory/regulatory cytokine profile marked by simultaneous raise of interferon-gamma and interleukin-10 and low frequency of tumour necrosis factor-

81. Bacellar O, D’olveira A Jr, Jerônimo S, Carvalho EM (2000) IL-10 and IL-12 are the main regulatory cytokines in visceral leishmaniasis. Cytokine 12: 1226t-1231.

requires exogenous IL-12 as an adjuvant for comparable protection against L. major. Vaccine 27: 1306-1316.

