De Novo BRCA1 Pathogenic Variant in a Woman with Breast Cancer at Age 33: A Case Report

Tam S¹, Vesprini D²,³, Eisen A⁴,⁵ and Lorentz J⁴,⁶*

¹Department of Radiation Oncology, Sunnybrook Odette Cancer Centre, Toronto, ON, Canada
²Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
³Department of Medical Oncology, Sunnybrook Odette Cancer Centre, Toronto, ON, Canada
⁴Department of Medical Oncology, University of Toronto, Toronto, ON, Canada
⁵Department of Cancer Genetics and High Risk, Sunnybrook Odette Cancer Centre, Toronto, ON, Canada
⁶Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada

Abstract

BRCA1 and BRCA2 are tumor suppressor genes that aid in non-homologous DNA repair. Germline pathogenic variants in these genes cause hereditary breast and ovarian cancer syndrome (HBOC). De novo pathogenic variants (PVs) in BRCA1 and BRCA2 are rare. In the literature, to date, twelve BRCA1 (including the present) and six BRCA2 de novo PVs have been published. We present a woman of Scottish and English descent, with a de novo BRCA1 likely pathogenic variant (LPV) diagnosed with triple negative breast cancer at age 33. The patient was referred for genetic counseling. Neither of her parents carried this familial variant and parental inheritance testing was done to rule-out a non-paternity or non-maternity event. A de novo LPV is the most plausible explanation for this case. Knowing whether there is a BRCA1 or BRCA2 PV is of significant clinical value in breast and ovarian cancer prevention and management. Knowledge of the rate of de novo PVs provides additional information to practicing geneticists and genetic counselors to aid in pedigree assessment for the HBOC in families.

Keywords: BRCA1; De novo; Mutation; Breast cancer; Pathogenic variant

Abbreviations: BC: Breast Cancer; HBOC: Hereditary Breast and Ovarian Cancer; MLPA: Multiplex Ligation-Dependent Probe Amplification; BBC: Bilateral Breast Cancer; OC: Ovarian Cancer; PV: Pathogenic Variant; LPV: Likely Pathogenic Variant; ACMG: American College of Medical Genetics; SIFT: Scale Invariant Feature Transform

Introduction

Up to 10% of breast cancers are thought to be hereditary in etiology and despite multi-gene panel testing, pathogenic variants (PVs) in BRCA1 and BRCA2 are still the leading cause of hereditary breast and ovarian cancer syndrome (HBOC). HBOC is characterized by a family history of breast cancer, ovarian cancer, male breast cancer, and to a lesser extent, prostate cancer, pancreatic cancer and melanoma [1,2]. BRCA1 and BRCA2 have been tested for over 20 years yet there are very few reported cases of de novo PVs in the literature. To the best of our knowledge, 11 cases of de novo BRCA1 PVs and six cases of de novo BRCA2 PVs have been reported (Table 1). This study presents a case of a de novo BRCA1 likely pathogenic variant (LPV) in a 33-year-old woman with triple negative breast cancer.

Case Report

A 33-year-old woman with right invasive ductal carcinoma of the breast was referred for genetic counseling due to her personal and family history of early-onset breast cancer. This patient initially palpated a lump in the right breast and went on to have a mammogram followed by an ultrasound guided biopsy confirming invasive ductal carcinoma. She then completed lumpectomy and sentinel lymph node biopsy which showed a 1.8 cm mass, ER, PR and HER2-negative.

The patient is of Scottish and English descent and has a significant maternal family history of cancer. Her maternal aunt was diagnosed with stage 4 ovarian papillary serous cystadenocarcinoma at the age of 54 and died at age 57. Her maternal cousin was diagnosed with right invasive ductal carcinoma of the breast at age of 50. The patient does not have any known paternal cancer history. Neither her brother nor sister, ages 45 and 43, were diagnosed with cancer.

Genetic testing was completed by PCR/automated bidirectional Sanger sequencing and multiplex ligation-dependent probe amplification (MLPA) of genomic DNA extracted from a blood sample. An ACMG category 2 likely pathogenic variant (LPV) in exon 18 of BRCA1 was identified in this patient, c.5144G>A (BIC 5263G>A). This variant results in the substitution of asparagine for the serine at position 1715. In silico analysis by SIFT and POLYPHEN-2 predict this variant to be not tolerated and possibly damaging, respectively. Several functional studies demonstrate this variant is deleterious [3-5] and this variant has also shown to segregate with disease in an extended family [6].

Results

Genetic counseling was then offered to each of the patient’s parents. The mother and father tested negative for the BRCA1 c.5144G>A likely pathogenic variant. A second blood sample was acquired and repeat site-specific predictive testing confirmed both parents tested negative [7-10]. The patient’s brother also tested negative whereas the sister has not yet had predictive testing. This finding suggests a de novo likely pathogenic variant (Figure 1).

In order to rule out a non-paternity event microsatellite analysis was completed using multiple markers on chromosomes 13, 18, 21, X and Y. PCR amplification of three variable regions followed by capillary electrophoresis allowed comparison of the sizes of the amplified alleles. Nine polymorphic markers were used which showed alleles from both parents for the chromosomes listed above [11-15]. The result

*Corresponding author: Lorentz J, Department of Cancer Genetics and High Risk, Sunnybrook Odette Cancer Centre, Toronto, ON, Canada, Tel: + 4164805000; E-mail: justin.lorentz@sunnybrook.ca

Received May 25, 2019; Accepted July 24, 2019; Published July 31, 2019


Copyright: © 2019 Tam S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
was consistent with the family relationship indicated on the pedigree submitted, effectively ruling out a non-paternity event.

Discussion

The LPV BRCA1 c.5144G>A was found in a patient with early onset triple negative breast cancer and was not found in her biological parents. Her brother also tested negative and her sister has not yet undergone testing. Laboratory error, although plausible is highly unlikely as repeat testing was conducted on separate samples submitted by the patient and her parents. The event of non-paternity would be highly unlikely as parental inheritance testing was conducted, and results sustained the stated paternity and maternity with high probability [16,17].

The most likely explanation for this finding is that the BRCA1 LPV identified in the proband is de-novo. Low-level mosaicism of the BRCA1 LPV in the patient is another plausible explanation in this scenario. One approach to rule out mosaicism is through punch biopsy, fibroblast culture and DNA extraction however this was declined by the proband. DNA extraction from hair follicles have been reported in the literature however this process has not been validated by the molecular lab used in this case report [18,19].

To the best of our knowledge, twelve cases of de novo BRCA1 PVs (including the present case), and six cases of de novo BRCA2 PVs have been reported (Table 1). Most PVs have been identified in patients diagnosed with breast cancer before the age of 40.

Conclusion

De novo PVs in BRCA1 and BRCA2 genes are rare. This case presents a de novo LPV in the BRCA1 gene in a woman with triple negative, early onset breast cancer. Neither parent carries the familial BRCA1 variant. Paternity testing was done to show true paternity and maternity. Plausible explanations include a de novo variant or mosaicism. A further understanding in the frequency and recognition of de novo BRCA1 and BRCA2 PVs could be of significant value in pedigree assessment, referral and identification in probands with BRCA1 and BRCA2 PVs.
References


