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Description
Viral infection causes major endothelial dysfunction disorders 

that involve the immune system, the inflammatory response and the 
apoptosis-angiogenesis interdependency which is a major process 
in tissue repair and regeneration [1]. Restoration of the unbalanced 
angiogenesis-apoptosis pathway in viral infection, as well as in wound 
healing, depends on endothelial functions which are regulated by shear 
stress [2].

As a reminder, Endothelial Shear Stress (ESS) controls and 
maintains endothelial functions [3], as well as vasculogenesis, 
cardiogenesis, embryogenesis, organogenesis through the angiogenesis-
apoptosis interdependency process, from the 8th day of gestation until 
death. Also, ESS stimulates chemical facilitators like monocyte chemo 
attractant protein-1 (MCP-1); TNF-α; bFGF and MMPs and promote 
potent vasodilators like Nitric Oxide (NO) [4,5].

Despite the ability of endothelial cells to adapt to various pathological 
conditions [6], the outcome of post-viral infection depends on the host 
biological responses, which are governed by the diversity of patients’ 
conditions, viruses and target organs [7-10]. This is clearly demonstrated 
by the controversial results of post-viral remodeling and metabolic 
processes of vital organs such as liver and brain [11,12], which become 
even worse with dynamic vital organs like the cardiopulmonary system. 
As restoration and maintenance of endothelial functions, the key vector 
to complete recovery of the hosts metabolic processes, depends on ESS-
inducing circulatory driving forces, causing the therapeutic dilemma of 
cardiopulmonary viruses [13].

Taking the example of the Covid-19 virus which invades host 
cells via Angiotensin Converting Enzyme Receptor 2 (ACE2) [14], 
we can recognize that most of the patients succumb to multiple organ 
failure and/or Sudden Cardiac Arrest (SCA) as a result of aggravated 
endothelial dysfunction disorders, whether in the form of comorbid 
conditions e.g., arterial hypertension, mediated by the virus, e.g., 
inflammatory response and/or iatrogenic, e.g., thromboembolic 
syndrome [15]. Likewise, the outcome of viral myocarditis like almost 
all types of Dilated Cardiomyopathy (DCM) remains a potentially 
life-threatening condition [16,17]. The restoration of the unbalanced 
angiogenesis-apoptosis pathway in post-viral DCM that requires 
neovascularization with a full-thickness myocardial reconstruction, is 
principally regulated by vasculogenesis, angiogenesis and cardiogenesis 
endothelial function processes [18].

As is known, the early vasculogenesis process begins at the 
embryonic endometrial implantation around the 6th day of gestation, 
to create the first blood vessels from blood islands, to be followed by 
sprouting-splitting angiogenesis to construct the whole cardiovascular 
system: heart, vessels and blood components [19,20]. Similarly, 
early cardiogenesis process which employs the constitution of 
endocardium, myocardium (atrioventricular myocytes and Purkinje 
fibers) and epicardium from the original cardiac mesoderm precursor 
cells (cardiogenic mesoderm) [21], depends on both Endocardial 
Endothelium (EE) and Myocardial Capillary Endothelium (MyoCapE), 
and additionally to circulating endothelial cells rather than coronary 
vascular endothelium [22].

In the intrauterine life, ESS is provided principally by myocardial 
contractility of the fetal heart [23]. In the early postnatal period, after 
suppression of the placental circulation, drop of pulmonary afterload and 
closure of physiological shunts, angiogenesis-cardiogenesis processes 
depend principally on the respiratory pump, cardiac contractility and 
vascular resistances. For example, in the postnatal period, successful 
right or left myocardial remodeling occurs independently of coronary 
network by the direct effect of ESS on the endocardium as a result 
of increased afterload of the contractile ventricle. This is obviously 
demonstrated in pathophysiologic remodeling such as Cor pulmonale 
[24], severe aortic stenosis [25] and pulmonary artery banding [26], 
which occurs due to increased intraventricular ESS (Laplace’s law). 
Similarly, an increased intravascular ESS can seriously disturb the 
physiological remodeling at the right heart side, promoting serious 
hemodynamic conditions and irreversible damage, such as Eisenmenger 
syndrome and vein graft disease [27-29]. We should emphasize that 
in most of viral dilated cardiomyopathy patients show symptoms and 
signs of left ventricular failure which subsequently leads to congestive 
heart failure. The right-heart side including the pulmonary tract is a 
highly compliant circuit, in which the Right Ventricular (RV) mass 
is approximately 1/6 of the left ventricular mass. This makes the RV 
vulnerable to sudden mechanical overload which is a rapidly fatal 
hemodynamic condition that cannot withstand the time-consuming 
remodeling processes, refuting claims of acute myocardial dilation in 
Covid-19 patients [30].

In conclusion, disruption of potential ESS-inducing circulatory 
driving forces, as in viral cardiomyopathy, can promote irreversible 
damage due to compensation of apoptotic cardiomyocytes by fibrous 
tissue. Likewise, post-viral pulmonary fibrosis, most often occur in 
patients with Acute Respiratory Distress Syndrome (ARDS), treated 
with mechanical ventilation. As ventilators prevent the respiratory 
pump from performing its crucial role as a potential ESS generator, 
along with their interference with coronary perfusion flow causing 
further hemodynamic deterioration in ARDS. Besides, heterogeneity 
of extra-alveolar and alveolar endothelial cells of the fragile alveolar 
system can promote barotrauma, and most likely alveolar fibrosis 
[31,32]. Smooth and uneventful recovery of cardiopulmonary 
viruses may require the employment of ESS therapy which controls 
hemodynamics, tissue oxygenation, remodeling and metabolic 
processes via a plurality of endothelial mediators [33]. The clinical 
application of ESS could be induced properly with pulsatile CAD, in 
correspondence with pathophysiology and cardiovascular biophysics to 
maintain a fully functioning respiratory pump and avoid the creation of 
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a vicious circuit of energy losses and endothelial dysfunction raised by 
opposing hydraulic circuits [13,34]. 
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