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Abstract

Obesity is caused as the consequence of positive energy balance, which increases the amount of lipid in adipose
tissue. The intake of excessive amounts of fatty acids is considered to be a risk factor for cardiovascular diseases,
insulin resistance, dyslipidemia, and obesity. Males and females experience many diseases and disorders differently.
Sex hormones, such as estrogen, progesterone, and androgen, contribute to the sex differences in body weight and
metabolism between males and females and are thought to be responsible for sex-specific differences. Several
studies have shown that the sex-specific adverse effects were observed in peripheral nerves. This review focuses
on the sex difference in lipotoxicity in peripheral nerves. High-fat diet feeding promotes oxidative stress and
inflammation in animal models. In male mice fed the high-fat diet, the pathogenesis of neuropathy is enhanced in the
sciatic nerves. The high-fat diet induced apoptosis in the sciatic nerves of male, but not female. In ovariectomized
female mice, a high-fat diet induces the apoptosis marker. On the other hand, estrogen attenuates high-fat diet-
induced apoptosis markers in the sciatic nerve of ovariectomized female mice. Therefore, there indicate that
estrogen is a key factor for the sex difference in peripheral nervous disorder. In vitro studies have reported that
estrogen-activated ERα prevents the fatty acid-induced oxidative stress and inflammation and has the inhibitory
effects of fatty acid-enhanced apoptosis and autophagy in peripheral nerves. On the other hand, a recent study has
reported that ERβ promotes autophagy in neural cells. These suggest that ERβ may have the opposite effects of
ERα in neural cells. Further studies are needed to understand the role of ER isoforms in neuron injury.
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Introduction
Obesity is caused as the consequence of positive energy balance,

which increases the amount of lipid in adipose tissue. The intake of
excessive amounts of fatty acids promote lipotoxicity, consequently
increases the risk for cardiovascular diseases, insulin resistance,
dyslipidemia, diabetes, and obesity. The percentage of patients with
peripheral neuropathy was more frequent in groups with the high
Body Mass Index (BMI) ( ≥ 30 kg/m2) compared to the low BMI (<30
kg/m2) [1]. Free fatty acids accelerate mitochondrial fission and
promote Reactive Oxygen Species (ROS) production [2]. ROS-
induced oxidative stress promotes dysfunction in peripheral nerves
[3]. Thus, it is assumed that lipotoxicity enhances the development of
peripheral neuropathy.

Obviously, males and females experience many diseases and
disorders differently. Sex hormones, such as estrogen, progesterone,
and androgen, contribute to the sex differences in metabolism between
males and females and are thought to be responsible for sex-specific
differences [4,5]. Several studies have reported that the sex-specific
adverse effects were observed in peripheral nerves [6-10].This review
focuses on the sex difference in lipotoxicity in peripheral nerves.

The Involvement of Signaling of Cell Death in
Peripheral Neuropathy by Fatty Acids

Peripheral neuropathy, a result of damage to peripheral nerves,
frequently causes numbness and pain, in the whole body, particularly

extremities. The major categories of peripheral nerve injury
(neuropathy) are generally neuronopathy, axonopathy, and
myelinopathy [11]. Neuronopathy is induced by cell death such as
apoptosis and/or autophagy in the cell body of neurons [12,13]. In
axonopathy, axon degeneration will lead to secondary loss of the
myelin sheath. Myelinopathy is caused by the destruction of the
myelin sheath. Apoptosis is a programmed mechanism of cell death
that is triggered in response to cellular stress. BCL2 family proteins,
such as BAX and BCL2, are key regulators of apoptosis. BAX-
activated Caspase-3 initiates DNA fragmentation, thereby leading to
cell death. On the other hand, autophagy is a lysosomal degradation
pathway. Autophagy can be either non-selective or selective. In
selective autophagy, autophagy receptors bind to cargoes and result in
degradation within lysosomes/vacuoles, depending on the core
autophagy machinery. p62/SQSTM1 is a key autophagy receptor that
can shuttle ubiquitinated cargo for autophagic degradation.

Fatty acids are chemically classified as saturated and unsaturated,
and each of them has specific biological functions. Interestingly,
saturated fatty acids induce apoptosis [14] and unsaturated fatty acids
induce autophagy [15]. Recently, Ogawa et al. also reported that
saturated fatty acid-induced apoptosis marker and unsaturated fatty
acid increased the level of the autophagy-related gene in neural cells
[16,17]. However, the mechanism by which fatty acids induce
different molecular cell death (apoptosis and autophagy) dependent on
saturation remains unclear. In animal studies, High-Fat Diets (HFD)
rich in both saturated and unsaturated fatty acids are often used to
induce obesity, and many studies have reported that the HFD induces
apoptosis in hepatocytes and cardiomyoblasts [18]. Similarly, Ogawa
et al. recently reported that the HFD induced the increase of apoptosis
markers in the peripheral nerves.In neural cells, the treatment of fatty
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acids induced protein expression of BAX and the number of apoptotic
cells [19]. By contrast, mice fed the HFD have reduced hepatic
autophagy [20]. The HFD inhibits autophagy in cardiomyocytes.
Therefore, the mixtures of saturated and unsaturated fatty acids
probably induce apoptosis but not autophagy

Sex Difference in Lipotoxicity in Peripheral Nerves
Sex hormones, such as estrogen, progesterone, and androgen,

contribute to the sex differences in metabolism between males and
females and are responsible for sex-specific differences. The
pathogenesis of neuropathy is enhanced in the sciatic nerves of male
mice fed the HFD. Male mice are more vulnerable than the females to
the impacts of the HFD on weight gain, metabolic alterations and
deficits of learning, and hippocampal synaptic plasticity. Male rats
with diabetes have a higher frequency of neuropathy than female rats
with diabetes [21]. Similarly, male mice develop a greater extent of
diabetes-induced cognition deficits and peripheral neurovascular
dysfunction than female mice [22]. In our recent study, HFD induced
apoptosis in the sciatic nerves of males, but not females. Therefore,
these indicate that there is a sex difference in peripheral neuropathy.

In ovariectomized females fed the HFD, the levels of the apoptosis-
related genes were increased compared to ovariectomized mice fed a
normal diet. In contrast, the replacement of estrogen, a female
hormone, in ovariectomized mice abolished the HFD-induced mRNA
levels of two apoptosis-related genes.Thus, it is assumed that estrogen
has prevented the cell damage of central and peripheral nerves.

The Role of Estrogen Receptor Isoform in the
Peripheral Nerve Injury by Lipotoxicity

Estrogen signaling is mediated by binding to estrogen receptor α
(ERα) and/or ERβ, which are a member of the nuclear receptor family.
The function of estrogen can be mediated by direct binding of
estrogen receptor complexes to specific sequences in gene promoters
(genomic effects), or by mechanisms that do not involve direct binding
to DNA (non-genomic effects). Estrogen prevents apoptosis via ERs-
mediated non-genomic actions in many cell types [23]. Both ERα and
ERβ are expressed in the brain [24] and peripheral neurons [25]. ERs
are necessary for the embryonic development of the brain.

Fatty acids induce oxidative stress and inflammation, consequently
lead to cell death [26,27]. Estrogen mediates neuroprotection and anti-
inflammatory effects through ERα signaling on astrocytes and neurons
[28]. Estrogen also attenuates ischemic oxidative damage via an ERα-
mediated inhibition of NADPH oxidase activation [29]. In short,
estrogen exerts anti-inflammatory and anti-oxidant properties.
Cerebral ischemia is followed by a local inflammatory response that
contributes to tissue damage. The harmful effects are caused due to
excess nitric oxide (NO) production by the inducible isoform of NO
synthase (iNOS). Another study has shown that the decrease of iNOS
expression by estrogen is one of the factors mediating the resistance to
cerebral ischemia in females [30]. In female rats, the HFD led to
increased iNOS expression and decreased levels of estrogen and ERα
protein in the HFD-fed group [31]. Estrogen and ERα-selective
agonist, but not ERβ-selective agonist, prevented the oleic acid-
induced cytotoxicity in Neuro-2a neural cells. Thus, these indicate that
estrogen prevents the fatty acid-induced oxidative stress and
inflammation via ERα in peripheral nerves.

Oleic acid, an unsaturated fatty acid, induced autophagy but had a
minimal effect on apoptosis. In contrast, palmitic acid, a saturated
fatty acid, was suppressed autophagy, and significantly induced
apoptosis in hepatocytes. Neuroprotective effects of estrogen in the
peripheral neuron are partly related to the suppression of excessive
autophagy [32]. The knockdown of ERα induces autophagy and
promotes ROS-induced cell death in breast cancer cells [33], therefore
estrogen inhibits autophagy via ERα. Estrogen inhibited the oleic acid
has induced cytotoxicity, and enhanced the stearic acid induced
cytotoxicity at high concentrations. On the other hand, ERβ-selective
agonist slightly enhanced the oleic acid-induced cytotoxicity and
induced the increase of p62/Sqstm1 mRNA in Neuro-2a neural cells .
ERα and ERβ are known to undertake different effects in various
tissues [34,35]. A recent study has reported that ERβ promotes
autophagy in neural cells [36]. Therefore, these suggest that estrogen
plays probably the different roles between saturated fatty acids and
unsaturated fatty acids, and ERβ may have the opposite effects of ERα
in neural cells. Further studies are needed to understand the role of ER
isoforms in neuron injury.

Conclusion
HFD-induced lipotoxicity enhances the development of peripheral

neuropathy in males only. In females, estrogen attenuated HFD
feeding damaged the sciatic nerves. In short, estrogen is assumed to be
responsible for sex differences in the injury of sciatic nerves. In vitro
studies indicate that estrogen plays probably the different roles
between saturated fatty acids and unsaturated fatty acids. In neural
cells, ERα prevents the saturated fatty acid-induced cytotoxicity by the
inhibitory effects of oxidative stress and inflammation, and ERβ
promotes cytotoxicity. ERα and ERβ are known to exert different
effects in various tissues. Therefore, ERβ may have the opposite
effects of ERα in neural cells. Further studies are needed to understand
the role of ER isoforms in neuron injury.
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