

Health Information Technologies in Diabetes Management

Eduardo J Simoes*

Department of Health Management and Informatics, School of drugs, University of Missouri-Columbia, Columbia, MO, USA

Commentary

About 1 in 11 adults worldwide now have DM, 90% of who have type 2 diabetes (T2D). Successful glycaemic control helps to prevent and reduce complications of T2D, including disorder, kidney disease, blindness, neuropathy, and limb amputation, and reduce death related to the disease. However, maintaining optimal glycemic control requires on-going monitoring and treatment, which can be costly and challenging. To reinforce diabetes management, the event of innovative self-care strategies is warranted. Advances in health information technologies (HITs) can have been introduced approaches that support effective and affordable health-care delivery and patient education. Technologies in the mobile, computer, e-mail, and Internet approaches have shown evidence in enhancing chronic disease management, suggesting great potential for diabetes management technologies. During this chapter, we provided a summary of the HITs in use for T2D management. We synthesized the foremost recent findings on HITs' effect in reducing HbA1c and managing complications, cardiovascular conditions, especially [1]. Further, we discussed limitations within the present research during this area and implications for future research. Last, we presented challenges of applying HITs in T2D management within the real-world context and suggested steps to maneuver forward. Diabetes is that the fastest growing chronic condition worldwide. The prevalence of people with type 2 diabetes (T2D) is growing in each country. Diabetes is additionally the seventh leading explanation for death within the planet. Around 1.6 million people died because of diabetes in 2016. Higher blood glucose levels also caused an extra 2.2 million deaths, by increasing the risks of cardiovascular and other complications like kidney disease, blindness, neuropathy, and limb amputation. Successful glycemic control can prevent and reduce these complications. However, to require care of optimal glycemic control requires on-going monitoring and treatment, which can be costly and challenging. Advances in health information technologies (HITs) have introduced approaches that support effective and affordable healthcare delivery and education [2].

The potential of HITs in chronic disease management

Diabetes is the fastest growing chronic condition worldwide. The prevalence of people with type 2 diabetes (T2D) is growing in each country. Diabetes is also the seventh leading cause of deaths in the world. Around 1.6 million people died due to diabetes in 2016. Higher blood glucose levels also caused an additional 2.2 million deaths, by increasing the risks of cardiovascular and other complications such as kidney disease, blindness, neuropathy, and limb amputation. Successful glycemic control can prevent and reduce these complications. However, to maintain optimal glycemic control requires on-going monitoring and treatment, which can be costly and challenging. Advances in health information technologies (HITs) have introduced approaches that support effective and affordable health-care delivery and education [3].

HITs may include a broad range of technologies, electronic tools, applications, or systems that provide patient care, information, recommendations, or services for promotion of health and health care. The advantages of using HITs in health care are well documented. They have the potential to empower patients and support a transition from a task during which the patient is that the passive recipient of care services to an active role during which the patient is informed, has choices, and is involved within the decision-making process [4]. A growing research attention has been given to guage HITs' impact on diabetes management, including the first management goal, glycemic status, and major complications like cardiovascular conditions. Previous reviews on this subject suggested that HITs have the potential to reinforce these disease outcomes. However, effect size is restricted to the foremost outcome; glycated haemoglobin (HbA1c) varied between studies with reported mean difference ranging from -0.20 to -0.57%. The synthesized findings from the most recent systematic reviews. They searched randomized control trials (RCTs) that studied the effect of HITs on HbA1c among medically underserved patients.

Many of review studies including those mentioned above have shed light on the effect of HITs in glycemic control. However, these studies often included limited number of trials, lack of adherence to standard quantitative methods, inadequate attention to heterogeneity across studies, lumped nonrandomized and randomized trials together into evaluation, mixed participants with type 1 or type 2 diabetes into analysis, or restricted searching criteria to a particular patient population or a specific type of HIT. To address these limitations and to verify if and how much HITs impact glycemic control, Yoshida and colleagues recently conducted a meta-analysis to examine the most current state of evidence from RCTs concerning the effect of HITs on HbA1c reduction among patients with T2D. From an analysis of 34 eligible studies (40 estimates) identified from multiple databases from January 1946 to December 2017, the study reported that introduction of HITs to standard diabetes treatment resulted in a statistically reduced HbA1c [5].

Acknowledgment

The author would like to acknowledge his Department of Health Management from the University of Missouri-Columbia for their support during this work.

Conflicts of Interest

The author has no known conflicts of interested associated with this paper.

References

1. Yau JWY, Rogers SL, Kawasaki R, et al. (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35(3): 556-564.

*Corresponding author: Eduardo J Simoes, Department of Health Management and Informatics, School of drugs, University of Missouri-Columbia, Columbia, MO, USA, Tel: +5738826179; E-mail: simoese@health.missouri.edu

Received: 02-Mar-2022, Manuscript No: jcds-22-135; Editor assigned: 04-Mar-2022, PreQC No: jcds-22-135 (PQ); Reviewed: 10-Mar-2022, QC No: jcds-22-135; Revised: 15-Mar-2022, Manuscript No: jcds-22-135 (R); Published: 22-Mar-2022, DOI: 10.4172/jcds.1000135

Citation: Simoes EJ (2022) Health Information Technologies in Diabetes Management. J Clin Diabetes 6: 135.

Copyright: © 2022 Simoes EJ. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Page 2 of 6

- Lu J, Ma X, Zhou J, et al. (2018) Association of Time in Range, as Assessed by Continuous Glucose Monitoring, With Diabetic Retinopathy in Type 2 Diabetes. Diabetes Care 41(11): 2370-2376.
- Zhao Q, Zhou F, Zhang Y, Zhou X, Ying C (2019) Fasting plasma glucose variability levels and risk of adverse outcomes among patients with type 2 diabetes: A systematic review and meta-analysis. Diabetes Res Clin Pract 148: 23-31.
- The ACCORD Study Group and ACCORD Eye Study Group, Chew EY, Ambrosius WT, Davis MD, Danis RP, Gangaputra S, et al. (2010) Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med 363(3): 233-244.
- Zheng Y, He M, Congdon N (2012) The worldwide epidemic of diabetic retinopathy. Indian J Ophthalmol 60(5): 428-431.

Page 3 of 6

Characteristics		Number	Percentage (%)
Age	18-49	115	49%
	>49	160	58.10%
Sex	Male	125	45.45%
	Female	150	54.50%
Marital status	Single	20	7.30%
	Married	181	66%
	Divorced	36	13%
	Widowed	38	13.90%
Religion	Orthodox	70	25.45%
	Muslim	165	60%
	Protestant	25	9.10%
	Catholic	15	5.45%
Residence	Urbane	238	86.50%
	Rural	37	13.45%
Occupation	Governmental	110	40%
	Non-governmental	34	12%
	Hose wife	67	24.40%
	Private business	44	16.40%
	Other	20	7.30%
Ethnicity	Oromo	198	72%
	Amhara	14	5.10%
	Tigray	7	2.54%
	Wolayita	30	11%
	Other	26	9.45%
Educational status	No education	78	28.30%
	primary education	41	14.90%
	Secondary education	18	6.54%
	Higher education	138	50.20%
Monthly income	<1000	113	41.10%
	1001-2000	65	23.60%
	2001-3000	37	13.50%
	3001-4000	31	11.30%
	>4000	29	10.50%

 Table 1: Socio-demographic characteristics of diabetes mellitus patients attending at Jimma University specialized hospital, Southwest Ethiopia, 2018.

 Table 2: The prevalence of urine physical parameters of diabetes mellitus patients attending at Jimma University specialized hospital, Southwest Ethiopia, 2018.

No.	Physical charac	cteristics'	Number	Percentage (%)	
1	Color	Colorless	43	15.63%	
		Dark yellow	124	45.10%	
		Clear red	77	28%	
		Cloudy red	31	11.30%	
2	Transparency	Clear	20	7.30%	
		Hazy	44	16%	
		Cloudy	98	36%	
		Turbid	113	41.20%	
3	Foam	Dark	136	49.45%	
		Beer	139	50.54%	
4	Odor	Sweetie fruity	146	53.10%	
		Aromatic	20	7.30%	
		Pungent smile	109	40%	

Page 4 of 6

Variable		Protein		Gluc	Glucose		Ketone	
		Р%	N %	Р%	N %	N %	P%	
Age	≤49	10(3.6)	95(34.5)	97(35.3)	23(8.4)	61(22.9)	52(19)	
	>49	30(10.9)	140(51)	91(33.1)	64(23.3)	39(14.9)	123(44.7)	
Sex	Male	15(5.5)	109(39.6)	99(36)	29(10.54)	84(30.5)	24(8.7)	
	Female	25(9.1)	126(45.8)	89(32.36)	58(21.1)	16(58.9)	151(57.1)	
TDM	Type 1	10(3.6%)	110(40)	60(21.8)	18(6.54)	82(29.8)	37(13.5)	
	Type 2	30(10.9%)	125(45.5)	128(46.54)	69(25.1)	18(6.5)	138(50.9)	
FHDM	Yes	17(6.2)	135(49.1)	24(8.72)	28(10.9)	42(15.3)	21(7.6)	
	No	23(8.4)	100(36.4)	164(59.6)	59(21.45)	58(21.1)	154(56)	
ALC	Yes	13(4.7)	59(21.5)	31(11.27)	34(12.4)	9(3.4)	19(6.9)	
	No	27(9.8)	176(64)	157(57.1)	53(19.3)	91(33.1)	156(56.7)	
НТ	Present	15(5.5)	54(19.6)	93(33.8)	21(7.6)	22(8)	78(28.4)	
	Absent	25(9.1)	181(65.8)	95(34.54)	66(24)	78(28.4)	97(35.3)	
SBP	<140	31(11.3)	45(16.4)	147(53.5)	71(25.8)	87(31.6)	105(38.2	
	≥140	9(3.27)	190(69.1)	41(15)	16(5.8)	13(4.7)	70(25.5)	
DBP	<90	21(7.6)	172(62.5)	138(50.9)	65(23.6)	94(34.2)	111(40.4)	
	≥90	19(6.9)	63(22.9)	50(18.9)	22(8)	6(2.2)	64(23.3)	
BG	≤130	22(8)	100(36.4)	74(27)	19(69.1)	14(5.1)	59(21.5)	
	>130	18(6.5)	135(49.1)	114(41.5)	68(24.7)	86(31.3)	116(42.2)	
BMI	<25	5(1.8)	159(57.8)	117(42.5)	55(20)	93(33.8)	44(16)	
	25-29.9	20(7.3)	47(17.1)	53(19.3)	18(6.54)	5(1.8)	70(25.5)	
	≥30	15(5.5)	29(10.5)	18(6.54)	14(50.9)	2(0.3)	61922.2)	

Table 3: The prevalence of urine chemical parameters of diabetes mellitus patients attending at Jimma University specialized hospital, Southwest Ethiopia, 2018.

Table 4: Microscopic result of diabetes mellitus patients attending at Jimma University Medical Center, Southwest Ethiopia, 2018.

Variable		Bilirubin		Urobilinogen		Leucocytes esterase		Nitrite	
		Р%	N %	Р%	N %	P%	N%	P%	N%
Age	≤49	25(9.1)	169(61.5)	34(12.4)	98(35.3)	64(23.3)	53(19.3)	32(11.6)	124(45.1
	>49	39(14.2)	42(15.3)	45(16.4)	48(17.5)	91(33.1)	67(24.4)	43(15.6)	76(27.6)
Sex	Male	23(8.4)	153(55.6	29(10.5)	117(42.5	47(17.1)	81(29.5)	53(19.3)	67(24.4)
	Female	41(14.9)	58(21.1)	50(18.2)	29(10.5)	108(39.3	39(14.2)	22(8)	133(48.4
TDM	Type 1	19(6.9)	120(43.6	33(12)	88(32)	28(10.2)	56(20.4)	34(12.4)	122(44.4
	Type 2	45916.4)	91(33.1)	46(16.7)	68(24.7)	127(46.2	64(23.3)	41(14.9)	78(28.4)
FHDM	Yes	21(7.6)	135(48.7	21(7.6)	98(35.6)	18(6.5)	31(11.3)	23(8.4)	145(52.3
	No	43(15.6)	77(28)	58(21.1)	48(17.5)	137(49.8	99(36)	52(18.9)	55(20)
ALC	Yes	41(14.9)	89(32.4)	18(6.5)	56(20.4)	11(4)	101(36.7	36(13.1)	110(40)
	No	23(8.4)	122(44.4	61(22.2)	90(32.7)	144(52.4	19(6.9)	39(14.2)	90(32.7)
HT	Present	17(6.2)	130(47.3	34(12.4)	59(21.5)	59(21.5)	42(15.3)	27(9.8)	132(48)
	Absent	47(17.1)	81(29.5)	45(16.4)	87(31.6)	96(34.9)	78(28.4)	48(17.5)	68(24.7)
SBP	<140	43(15.6)	107(40)	52(19)	109(38.5	88(32)	47(17.1)	19(6.9)	145(52.3
	≥140	21(7.6)	104(37.8	27(9.8)	37(13.5)	67(24.4)	73(26.5)	56(20.4	55(20)
DBP	<90	18(6.5)	139(50.5	23(8.4)	99(36)	97(35.3)	91(33.1)	57(20.3)	80(29.1)
	≥90	46(16.7)	72(26.2)	56(20.4)	47(17.1)	58(21.1)	29(10.5)	18(6.5)	120(43.6
BG	≤130	39(14.2)	100(36.4	34(12.4)	63(22.9)	44(16)	56(20.4)	33(12)	79(28.7)
	>130	25(9.1)	111(40.4	45(16.4)	83(30.2)	111(40.4	64(23.3)	42(15.3)	121(44)
BMI	5	23(8.4)	32(11.4)	47(17.1)	30(11)	76(27.6	66(24	42(15.3)	27(9.8)
	-29.9	22(8)	80(29.1)	26(9.5)	45(16.4)	60(21.8	42(15.3	21(7.6)	64(23.3)
	≥30	19(6.9)	99(36)	6(2.2)	71(25.8)	19(6.9	12(4.4	12(4.4)	109(39.6)

Citation: Simoes EJ (2022) Health Information Technologies in Diabetes Management. J Clin Diabetes 6: 135.

Citation: Simoes EJ (2022) Health Information Technologies in Diabetes Management. J Clin Diabetes 6: 135.