

Open Access

Plant biochemistry influences tropospheric ozone formation

Plotka Wasylka*

Department of Analytical Chemistry, Gdańsk University of Technology, Gdańsk, Poland

Abstract

Tropospheric ozone (O_3) is among the most damaging air pollutant to plants. Plants alter the atmospheric O_3 concentration in two distinct ways: (i) by the emission of volatile organic compounds (VOCs) that are precursors of O_3 ; and (ii) by dry deposition, which includes diffusion of O_3 into vegetation through stomata and destruction by nonstomatal pathways. Isoprene, monoterpenes, and higher terpenoids are emitted by plants in quantities that alter tropospheric O_3 . Deposition of O_3 into vegetation is related to stomatal conductance, leaf structural traits, and the detoxification capacity of the apoplast. The biochemical fate of O_3 once it enters leaves and reacts with aqueous surfaces is largely unknown, but new techniques for the tracking and identification of initial products have the potential to open the black box.

Keywords: Antioxidant; Biogenic volatile organic compounds; Glandular trichomes; Ozone; Reactive; Oxygen; Species, Stomata

Introduction

Tropospheric O₃ formation

 \mathbf{O}_3 in the stratosphere filters UV radiation, but in the troposphere O₃ is a damaging air pollutant to human and plant health [Environmental Protection Agency EPA. Tropospheric O₂ (trioxygen) is an allotrope of oxygen that forms through chemical reactions with two chemically distinct precursors: nitrogen oxides $(NO_x = NO + NO_y)$ and reactive carbon molecules including carbon monoxide (CO), methane (CH₄), and **VOCs** Rates of O_3 formation depend on sunlight and the relative concentrations of NO_x and reactive carbon molecules; namely, methane and VOCs []. The reaction of nitric oxide (NO) with the peroxy radical (\dot{RO}_{2}) is the central reaction for the formation of O₂ in the troposphere. In this reaction, NO is converted to NO₂ which is rapidly photolyzed to form O₂ and recycle NO. The efficiency with which O₃ is produced from NO_x pollution varies with the location and time of emissions. For example, in the polluted regions at the Earth's surface, NO_x rapidly reacts to form HNO₃, which serves as a reservoir for NO_x. In less polluted areas, NO₂ photolysis competes more effectively with HNO3 production and more molecules of NO_x react with peroxy radicals to form O₃. In regions where NO_x is propelled into the free troposphere, like the tropics, O₂ production is especially efficient. Additionally, the VOC:NO, ratio determines the O₃ concentration. In urban areas with elevated NO_x due to high emissions, O₃ formation is limited by VOCs, leading to locally suppressed O₂ concentrations. NO₂ transported away from urban centers can mix with VOCs, resulting in greater O₂ concentrations in suburban areas [1].

VOCs

Plants produce a vast diversity of biogenic VOCs, including isoprene, monoterpenes, and higher terpenoids .Terrestrial vegetation emits isoprene at high levels (~400–600 Tg C year⁻) and isoprene has high chemical reactivity in the troposphere .The tropospheric lifetime of isoprene is only ~ -2 h and it is rapidly oxidized by hydroxyl radicals, O₃, and nitrate radicals (NO₃). The degradation of VOCs leads to the formation of peroxyl radicals. Those react with NO to form NO₂, which then photolyzes to form O₃ In areas with very low NO_x, peroxy radicals formed from isoprene oxidation react with each other or O₃, resulting in net O₃ destruction. Globally, modeling studies estimate that forestemitted isoprene increases the tropospheric O₃ concentration by 5–

8% .Isoprene oxidation can also produce peroxyacylnitrates (PANs), which can be transported long distances under cool, high-altitude conditions. The long-distance transport of PANs can contribute to O_3 formation far from the pollutant source. Thus, globally, biogenic VOCs contribute to O_3 formation in the troposphere, although there is significant variation in isoprene emissions among ecosystems and species .For example, broadleaf forests have average isoprene emissions of 2.6 mg m⁻² h⁻, needle-leaf evergreen trees emit 2.0 mg m⁻² h⁻, and crops emit very little, only 0.09 mg m⁻² h⁻. This variation in emission led to concerns that increasing the planting of isoprene-emitting bioenergy species will increase O_3 stress, leading to crop yield loss and increased human mortality [2].

Stomatal control of O₃ deposition

Deposition of O₂ to terrestrial ecosystems is a significant sink for O₃, and understanding variation among ecosystems and species in O3 uptake is needed for accurate prediction of tropospheric O3 concentrations .Dry deposition occurs when atmospheric turbulence transports O₃ close to a surface and then O₃ moves through a boundary layer around a surface. O₃ dry deposition occurs through stomata as well as other, non-stomatal pathways including uptake by leaf cuticles, soil, water, snow, and manmade surfaces. A synthesis of observation studies found that stomatal uptake accounts for 45% of O₂ deposition on average across ecosystems. This percentage varies with season and ecosystem, but given a prominent role of stomata in O₂ deposition, understanding O, flux through stomata is a major research focus. To estimate O₂ diffusion through stomata, the resistance of stomata to water vapor is multiplied by the ratio of the diffusivity of water vapor to that of O₃ (.6), with the assumption that the water leaving a leaf is proportional to the O₃ entering and that O₃ reactions in the leaf do not limit stomatal uptake. Both of these assumptions, that water

*Corresponding author: Plotka Wasylka Department of Analytical Chemistry, Gdańsk University of Technology, Gdańsk, Poland; E-mail: plotka@wasylka.pl

Received: 6-May-2022, Manuscript No. bcp-22-63545 ; Editor assigned: 09-May-2022, PreQC No bcp-22-63545 (PQ); Reviewed: 14-May-2022, QC No bcp-22-63545; Revised: 20-May-2022, Manuscript No. bcp-22-63545 (R); Published: 27-May-2022, DOI: 10.4172/2168-9652.1000377

Citation: Wasylka P (2022) Plant biochemistry influences tropospheric ozone formation. Biochem Physiol 11: 377.

Copyright: © 2022 Wasylka P. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

loss is proportional to O_3 uptake and that there is negligible resistance to O_3 destruction inside the leaf, have been questioned and remain active research areas. Furthermore, long-term exposure to elevated O_3 pollution often reduces plant biomass and stomatal conductance, which limits subsequent O_3 deposition and can feed forward to increase atmospheric O_3 concentration [3].

The rapid response of stomata to O₃

Greater stomatal conductance tends to lead to more sensitivity to O₂, often attributable to greater O₂ uptake and subsequent oxidative damage. In the model species arabidopsis, natural variation in O₂ sensitivity, measured as ion leakage, was correlated with wholerosette conductance. Additionally, the greater O₂ sensitivity of the Cape Verde island accession has been linked to constitutively high stomatal conductance caused by impaired function of mitogenactivated protein kinase [4]. Thus, stomatal closure is a direct way to reduce O, uptake by leaves and alleviate oxidative damage. Stomatal pores close rapidly in response to acute O, exposure, followed by reopening, which depends on the O3 treatment concentration and duration. Some low-level O₂ exposure may also allow a faster response to higher doses of O₂ and therefore provide protection against greater O,-induced injury, a process known as priming. In an experiment with common bean, exposure of leaves to 30 min of 200-ppb O₂ before a greater, 600-ppb treatment resulted in greater stomatal closure and lower VOC emissions compared with the 600-ppb treatment alone. The correlation of sensitivity to O₂ stress with stomatal conductance, and the fact that stomata close in response to O₂, suggest that greater O₂ tolerance could be engineered by altering stomatal conductance. Stomata are the entry points for the CO, used for photosynthesis and so reducing stomatal conductance might also reduce CO, entry into the leaf and compromise productivity. However, recent work has demonstrated that genetic manipulations to reduce stomatal density only moderately reduced stomatal conductance and did not change photosynthesis, suggesting that there is room to optimize stomatal density to atmospheric conditions [5].

Conclusion

Identifying the extent to which plant biochemistry and physiology

contribute to tropospheric O₃ formation, destruction, and deposition will help in understanding the mechanisms that underpin plant O₃ sensitivity and improve predictions of global tropospheric O₂ concentration. Plant species release more than 30 000 different biogenic VOCs, including reactive classes of non-methane biogenic VOCs such as isoprene, which are emitted in large enough quantities to impact tropospheric O₃ concentrations. While isoprene can increase O, concentrations locally, monoterpenes and higher terpenoid compounds also rapidly react with O₂ in the leaf boundary layer and can protect plants from oxidative stress. Deposition of O₃ into vegetation is related to stomatal conductance and leaf structural traits. While there is evidence that antioxidants quench ROS within leaves, variation in detoxification capacity among different species is significant and the biochemical fate of O, once it enters leaves and reacts with aqueous surfaces remains largely unknown New techniques for the tracking and identification of initial products have the potential to shed light on that question and could improve the identification of targets to increase O₂ tolerance.

Acknowledgement

None

Conflict of Interest

None

References

- Butler (2020) Attribution of ground-level ozone to anthropogenic and natural sources of nitrogen oxides and reactive carbon in a global chemical transport model Atmos Chem Phys 20: 0707- 073.
- 2. R Atkinson (2000) Atmospheric chemistry of VOCs and NO_x Atmos Enviro 34: 2603-2700.
- L. Ye (2006) Photochemical indicators of ozone sensitivity: alication in the Pearl River Delta, China Front Environ Sci Eng 5-16.
- D.J. Jacob (1996) Origin of ozone and NO_x in the tropical troposphere: a photochemical analysis of aircraft observations over the South Atlantic basinJ. Geophys Res 24:235-24250.
- H. Simon (2005) Ozone trend across the United States over a period of decreasing NO₂ and VOC emissions Environ Sci Technol 49: 86-95.