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Abstract
Primary bone tumors, such as osteosarcoma, are highly aggressive pediatric tumors that develop lung metastases 

in 30% of cases and are characterized by a poor prognosis. Bone is also the third most common metastatic site in 
patients with advanced cancer, and when tumor cells settle in the skeleton, the disease is usually considered incurable 
and treatment is palliative. Osteosarcoma and bone metastases share a niche with the microenvironment of the same 
tissue. 3D culture is a new and promising approach for studying the interaction of tumor cells with other cells or cell-free 
components of the tumor microenvironment (fibroblasts, mesenchymal stem cells, bone ECM, etc.). In fact, 3D models 
can mimic the physiological interactions that are important for regulating soluble paraclinic factor response, tumor drug 
resistance, and aggression, and overall, these innovative models are animal-based. It may be possible to avoid the use 
of preclinical cancer models. So far, static and dynamic 3D cell culture models have proven to be particularly suitable 
for screening anticancer agents, providing accurate information by transforming in vitro cell cultures into precision 
medicine. This short report summarizes the latest technologies in the field of primary and metastatic bone tumors, the 
various methods and techniques used to realize 3D cell culture systems, and the path to personalized medicine. 
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Introduction
Osteosarcoma is a mesenchymal disease. They are derived from 

bone, and mesenchymal stem cells (MSCs) are tumor-forming 
progenitor cells [1, 2] and are also stromal cells [3, 4] involved in 
tumor development. In bone, tumor-supporting stroma is formed 
by osteoblasts (bone-forming cells derived from MSC), osteolytic 
cells (bone-absorbing cells), endothelial and immune cells, and MSC. 
Osteoclasts attach to the bone surface and the range of factors involved 
in their activation may depend on the type of tumor. For example, 
osteoclasts can be stimulated directly by tumor cells [5, 6] or by tumor-
induced osteoblasts [7]. In OS, the presence of osteoclasts in the 
tumor microenvironment may promote the behavior of osteoblasts in 
tumor cells and increase their aggression [8] and is considered a poor 
prognosis factor [9]. Similarly, in BM, a delicate balance between bone 
deposition and resorption forms a pathogenic process [10]. Given the 
complexity and heterogeneity of bone tumors, treatment strategies 
aimed at eradicating them show a consistent slowdown compared 
to many other carcinomas. A better understanding of osteosarcoma 
carcinogenesis is clearly needed to overcome drug resistance and 
improve low survival. Many disorders make it difficult to study bone 
cancer with current tools. These are effective for the physical difficulty 
of manipulating bone as tissue, the rarity of sarcoma tumors, the 
difficulty of obtaining tumor tissue fragments from human patients 
with BM, and human disease includes a limited number of models 
to mimic. For all these reasons, the need for a new cell model of 
osteosarcoma is becoming increasingly important. This review focused 
on cellular models currently available for BM or sarcoma research. 
There have been recent advances from 2D to 3D cell culture models 
to model multicellular systems. Three-dimensional architecture is one 
of the main themes based on the formation of tissues and organs. This 
complexity begins during embryogenesis and is increased by cell-cell 
contact, which is the basis of intracellular function [11]. In addition, 
the cells are surrounded by ECM. It is important in determining cell 
differentiation, proliferation and homeostasis [12]. Therefore, an ideal 
3D culture model should not only properly mimic carcinogenesis and 
maintenance of tumor cell proliferation, but also mimic the interactions 
between mixed cells within the ECM. To date, several techniques 

have been developed and explored for this purpose. 3D static cultures 
include seeding of cells with a spherical structure that does not contain 
extracellular matrix, and seeding of cells into a matrix or scaffold 
made of natural or synthetic biomaterial. 3D dynamic cultures include 
bioreactor-cultured spheroids or scaffolds and cell dissemination on 
microfluidic perfusion devices.

Spheroids
One of the pioneering studies that opened the field of 3D culture 

is Sutherland et al. It is a study of [13]; they found that floating and 
proliferated lung cells were in the outer zone of proliferating cells, the 
malnourished and oxygenated intermediate zone with few mitotic 
cells, and the central zone of necrosis, which is a physiological feature. 
We first observed the formation of developing spheroids. Tumor mass 
forced levitation spheroids are the easiest way to generate spheroids. 
It prevents cells from adhering to the bottom of the well and provides 
buoyant aggregates and cell-cell contact. The hanging drop method is 
the most widely used and static technique [14]. Conversely, rotating 
cell culture bioreactors, spinner flasks, or agitated tank cultures [15] 
force uniform spheroid formation by continuous agitation [16]. Again, 
spheroids can be formed by a single cell type or mimic the interactions 
between multiple cells. B. Tumors and stromal cells [17]. These culture 
systems are highly reproducible and have low manufacturing costs. 
As early as 1971, it was clear that spheroids could be used for drug 
screening and radiation therapy testing [18] despite the benefits, not 
all cell lines form spheroids, and some just form unpredictable cell 
aggregates.
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Matrices and Scaffolds
Similar to spheroids, cells seeded in a matrix or scaffold can be 

cultured in either static or dynamic culture using a rotating cell culture 
bioreactor. A hydrogel-based matrix is ​​a network of hydrophilic, 
physically or chemically cross-linked polymer molecules that retain 
large amounts of water [19] and provide a 3D biomimetic environment 
that supports cell proliferation and differentiation. Masu [20] the great 
advantage of hydrogels is that they adapt to the specific properties 
of ECM. For example, hydrogels can be designed to contract or 
swell based on the environmental stimuli they receive [19] and can 
be easily concentrated with specific cell adhesion ligands to mimic 
soft tissue. Hydrogels are synthetic or naturally derived [21] and are 
primarily based on matrigel, collagen, or fibrin. Matrigel is derived 
from mouse sarcoma and has the most heterogeneous composition. 
The main components are structural proteins such as laminin, nidgen, 
collagen, and heparan sulfate proteoglycan. Matrigel polymerization 
is temperature dependent. Collagen-based hydrogels are also pH-
dependent and play an important role in cancer progression and are 
the most abundant protein in mammalian ECM. However, due to pH 
dependence, collagen-based hydrogels are unsuitable for studying the 
effects of tumor acidosis, a key feature in the development of bone 
cancer [22,23] or cancer-induced bone pain [24,25] will be 3D scaffolds, 
traditionally described as tools made from polymer biomaterials, 
provide attachment sites and hydrogel-like interstitial spaces for cells 
to grow and proliferate, thereby forming 3D structures. This has the 
advantage of providing a reproduction of the ECM [16]. Scaffold stiffness 
can be adjusted to affect cell adhesion, proliferation, and activation 
[26]. The materials used for scaffolding are biocompatible and must 
induce molecular biometric recognition of cells [27]. Biomaterials that 
mimic ECM are considered to be the most biocompatible, consisting of 
collagen, hyaluronic acid, matrigel, elastin, laminin-rich extracellular 
matrix, and alginate, chitosan, and silk. Synthetic biomaterials include 
two-phase systems such as polyethylene glycol, hyaluronic acid-PEG, 
polyvinyl alcohol, polycaprolactone, or polyethylene glycol-dextran. 
Many biomaterials, such as ceramics, can fall into the categories of 
natural or synthetic materials [28]. 

Microfluidic Device 
Recent advances in tissue engineering have led to the development 

of living multicellular microculture systems that are maintained in a 
controllable microenvironment and function at organ-level complexity 
[29]. Applications of these “on-chip” technologies are becoming more 
and more popular in cancer research [30]. The importance of these 
systems is that continuous perfusion of the medium through the 
microfluidic network can mimic blood flow and exchange nutrients, 
oxygen, and metabolites that are important for modeling living 
cancerous tissue with blood tissue innovation [31]. Invading cells that 
detach from solid tumors are exposed to the new microenvironment 
of the circulatory system. Depending on the size of the blood vessel, 
blood flow velocity can reach 0.03-40 cm / s, arterial hemodynamic 
shear force is 4.0-30.0 dyne / cm2, and venous shear force is 0.5-4.0 
dyne / cm2 [32].

Therefore, tumor cells need to adapt rapidly from static growth to 
fluid shear stress. This is a condition that static culture cannot handle. 
Until a few years ago, microdisks only supported 2D environments. 
Recently, 3D was introduced to support 3D aggregates. Finally, 
microfluidics have enabled the design and development of self-
organized organ-like cell aggregates derived from the pluripotent stem 
cells organoids, opening up a whole new level of biomimetics. Typical 

examples are the blood-brain barrier, 3D neural network, kidney, liver, 
or intact intestinal epithelium, or glioma, breast cancer, or sarcoma 
model when it comes to cancerous tissue [30]. This technique has the 
ability to add multiple cell lines on the same chip. It is possible to mimic 
the interactions between tumors and endothelial cells that are the 
basis of the metastatic process, including, for example, angiogenesis, 
intravascular invasion, and colonization of cancer cells. Similarly, 
microfluidics has been thoroughly studied to better reproduce the 
interactions between cancer cells and immune cells, with the ultimate 
goal of expanding knowledge of cancer immunotherapy. Finally, the 
formation of 3D spheroids has been combined using hanging drops on 
a microfluidic platform for drug testing or chemical reaction assays. The 
next big challenge is to fully validate these models before implementing 
them in the pharmaceutical industry’s drug development pipeline and 
ultimately in personalized medicine applications. 

Conclusion
Three-dimensional models have the potential to identify key 

molecular signaling pathways and establish a robust preclinical 
platform for assessing the clinical efficacy of new drugs that inhibit the 
development and progression of cancer.
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