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Abstract
Tumorigenesis is a multi-stage, dynamic biological process that involves several genetic and epigenetic changes, 

aberrant non-coding RNA expression, and modifications to the expression profiles of coding genes. We refer to this 
group of genome-space alterations as the "cancer initiatome." In the genome, long non-coding RNAs are widely 
expressed and have important regulatory roles in chromatin remodelling and gene regulation. In both normal 
development and pathological conditions, such as cancer, spatial and temporal heterogeneity in lncRNA expression 
has been noted. Even though several dysregulated lncRNAs have been examined in malignancies, it is still unclear 
how lncRNAs contribute to the development of cancer, particularly in the case of esophageal squamous cell carcinoma. 
From ESCC and matched nearby non-cancerous normal tissues, we performed a genome-wide screen to determine 
the expression of lncRNAs and coding RNAs. In comparison to matched normal tissue equivalents, we discovered 
which lncRNAs and coding RNAs were differently expressed in ESCC. Using polymerase chain reaction analysis, we 
confirmed the conclusion. Additionally, we discovered lncRNAs that are differentially expressed in ESCC and that are 
co-localized and expressed with differentially expressed coding RNAs. These findings suggest a possible interaction 
between lncRNAs and nearby coding genes that affects ether lipid metabolism and that this interaction may help to 
develop ESCC. These findings give strong support for a potential new genetic biomarker of esophageal squamous 
cell carcinoma.

Minimizing free energy, which is NP-hard, is frequently used to predict RNA secondary structures with pseudoknots. 
During transcription from DNA into RNA, the majority of RNAs fold in a hierarchical manner where secondary structures 
emerge before tertiary structures. Because of kinetics, local optimization is frequently used in real RNA secondary 
structures rather than global optimization. By taking dynamic and hierarchical folding mechanisms into account, the 
accuracy of RNA structure prediction may be increased. Based on a statistical examination of the actual RNA secondary 
structures of all 480 sequences from RNA STRAND, which are verified by NMR or X-ray, this study presents a fresh 
report on RNA folding that is consistent with the golden mean feature. With L standing for the sequence length, the 
length ratios of the domains in these sequences are roughly 0.382L, 0.5L, 0.618L, and L. The key golden sections of 
the sequence are just these locations. This feature allows for the building of an algorithm that simulates RNA folding by 
dynamically folding RNA structures in accordance with the aforementioned golden section points while also predicting 
RNA hierarchical structures. The Mfold, HotKnots, McQfold, ProbKnot, and Lhw-Zhu algorithms cannot match our 
algorithm's sensitivity and quantity of predicted pseudoknots. As a result of a novel perspective that is near to natural 
folding, experimental results follow the RNA folding regulations.
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Introduction
One of the most typical cancers is esophageal squamous cell 

carcinoma, which is also one of the leading causes of cancer-related 
fatalities globally. In some parts of China, there is a notable regional 
difference as well as an extraordinarily high prevalence [1]. Even 
though ESCC treatment has become more multidisciplinary, the 5-year 
survival rate is still low. The beginning of ESCC is a dynamic, complex 
biological process that occurs in the genome and may involve multiple 
steps of genetic and epigenetic alterations, aberrations in noncoding 
RNA expression, and modifications to the expression profile of coding 
genes. Prior to now, significant signalling pathways implicated in 
cancer were identified by the expression profiling of coding genes. 
An even more complex picture of cancer is emerging from the most 
recent research on actively transcribed long noncoding RNAs from 
high-throughput sequencing [2]. Endogenous cellular RNA transcripts 
called LncRNAs lack a significant-length open reading frame and have 
lengths of 200–100,000 nucleotides. LncRNAs exhibit more tissue- and 
cell-specific expression patterns than protein-coding genes, but they 
are typically expressed at lower levels. LncRNAs were once thought to 
be transcriptional noise, but current research indicates that they play 
crucial roles in disease progression and proliferation, including cancer, 
as well as in the formation and differentiation of distinct cell types. 
Modifying chromatin architecture and controlling gene expression 
in a cis or trans manner are two ways that transcribed lncRNAs are 
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said to work. For instance, in the same chromosomal location, H19 
lncRNA controls the expression of the IGF2 gene, and HOTAIR 
lncRNA is transcribed on Chr 12 and controls the HoxD gene on 
Chr 2. A "locus control" process, which mediates the localization of 
genes within nuclear regions to favour their transcription through 
the formation of domains of histone modification and intra- or 
interchromosomal loops, has also been reported to be used by lncRNAs 
to coordinate the regulation of nearby coding genes [3]. With diverse 
screening techniques, dysregulated lncRNAs in various cancer types 
have been discovered. For instance, the cancer-related lncRNA 
metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) 
was discovered by subtractive hybridization during screening for early 
non-small cell lung cancer with metastasis. In early stage lung cancer, 
overexpression of MALAT-1 is a strong indicator of a bad prognosis 
and shorter survival time.
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A small number of dysregulated lncRNAs have been found in a 
variety of malignancies, which raises the possibility that they are 
an elusive element of the entire transcriptome that plays a role in 
tumorigenesis, invasion, and metastasis [4]. The "lncRNAome" 
of various cancers is being investigated using cutting-edge high-
throughput RNA sequencing methods, and dynamic variations in 
lncRNA expression have been seen in cancer cells at various phases 
of the disease as well as after treatment. But there is still much to 
learn about lncRNAs' function in cancer biology, and there isn't yet a 
comprehensive list of lncRNAs' biological properties that can be used 
to predict cancer outcomes. The relationships between lncRNA and 
coding genes can therefore be thoroughly searched for and analysed to 
derive putative biological functions.

Molecularly, RNAs are adaptable. Ribosomal RNAs, transfer 
RNAs, and other non-coding RNAs also have crucial structural, 
regulatory, and catalytic roles in cells, in addition to messenger RNAs' 
roles as carriers of genetic information and the link between DNA and 
proteins [5]. We must first comprehend RNAs' structural makeup 
in order to fully comprehend their varied biological activities. The 
order of nucleotides in RNA's single-stranded polymer constitutes its 
fundamental structure. The sequences in question are not just lengthy 
strands of nucleotides, though. Three hydrogen bonds can develop 
between the complementary bases of the guanine and cytosine pair 
in RNA, two hydrogen bonds can form between the complementary 
bases of the adenine and uracil pair, and two hydrogen bonds can 
form between the complementary bases of the guanine and uracil pair. 
RNA forms a three-dimensional structure thanks to hydrogen bonds. 
Hydrogen bonds between base and backbone as well as noncanonical 
pairing help to keep folding stable. The secondary structure is the 
collection of base pairs found in the folded RNA molecule's tertiary 
structure, which is a 3D arrangement of atoms. Because RNA tertiary 
structures cannot be determined experimentally because it would be 
too costly and time-consuming, computational biology has turned 
RNA structure prediction by computers into a fundamental technique 
and problem [6].

The scaffold of the tertiary structures is one of RNA's secondary 
structures. To predict RNA tertiary structures from RNA sequences, 
one must first predict RNA secondary structures. Thermodynamic, 
comparative, and hybrid approaches are the three categories of 
computational methods for predicting RNA secondary structures. On 
the basis of a set of energy parameters that have been found through 
experiment, thermodynamic techniques use dynamic programming 
to determine the best secondary structure for a single RNA sequence 
with the lowest possible global free energy [7]. For relatively short 
RNAs, these techniques have been effective. When a large number of 
homologous sequences are available, manually comparing methods are 
more trustworthy than thermodynamic methods. To determine the 
structures of recognised RNA families, manual comparison methods 
have been employed. In statistics and mutual information, quantitative 
measures of covariance have been used. These methods of explicitly 
taking sequence phylogeny into account produced fruitful outcomes. 
Recently developed hybrid approaches incorporate the best features 
of both thermodynamic and comparative methods. On as few as three 
homologous sequences, hybrid techniques show promise since they take 
into account both sequence covariance and thermodynamic stability. 
Other approaches are not included in any of these three categories. 
Some of these techniques aim to fold and align homologous sequences 
simultaneously, using stochastic context-free grammars to align 
homologous sequences iteratively and discover a consensus structure. 
Based on the statistical evaluation of actual RNA secondary structures, 
the current study offers a fresh conclusion that RNA folding follows 

the golden mean feature [8]. The terms "golden section" and "golden 
ratio" are also used to refer to the golden mean. In the way that plant 
stems are arranged with their branches and the veins in their leaves, 
Adolf Zeising discovered the golden ratio to be expressed. In addition 
to studying animal skeletons, veins, and nerves, he also conducted 
research on crystal geometry and chemical compound proportions, as 
well as the application of proportion in artistic pursuits. He discovered 
that the golden ratio is a fundamental law governing these phenomena 
[9]. The strategy is put into practise using thermodynamic data, and its 
effectiveness is evaluated using the PKNOTS and TT2NE data sets. The 
preprocessing of the GM approach improves the sensitivity and PPV of 
the PKNOTS data set's Lhw-Zhu (LZ) and LZ algorithms by 2% to 3%. 
With regard to the TT2NE data set, the GM approach shows promising 
results in terms of predicting secondary and pseudoknotted structures. 
The experimental outcomes show the RNA folding regulations from 
a fresh perspective that is similar to natural folding. We provide a 
pilot analysis of the profiles of differentially expressed lncRNAs and 
coding RNAs from tumour and adjacent normal tissue of certain ESCC 
patients in order to comprehend the role of lncRNAs in this disease 
[10].

Material and Methods
Specimens

Before surgery, patients provided their written informed consent, 
and the Zhengzhou Hospital Institutional Review Board authorised 
the study protocol for the use of human subjects. In May 2012, 
patients with ESCC who received surgical therapy at Linxian Hospital 
provided primary tumours and nearby nonneoplastic tissues. Instantly 
following surgical resection, all tissues were immediately frozen in 
liquid nitrogen. None of the patients had ever undergone radiotherapy 
or chemotherapy, and none of them had any other life-threatening 
illnesses. At least two senior pathologists who work independently 
made histopathological diagnoses of all ESCC specimens.

Microarray Hybridization

The manufacturer's instructions were followed while extracting 
total RNAs using Trizol reagent. A 2100 Bioanalyzer was used to 
determine the quality of the RNAs. According to the Agilent One-
Color Microarray-Based Gene Expression Analysis Low for Input 
Quick Amp Labeling kit, 100 ng of total RNA was used as the input to 
produce Cyanine-3 labelled cRNA. Agilent SurePrint G3 Human GE 
K Microarray was used for sample hybridization. Data was processed 
using Agilent Feature Extraction 11.0.1.1 after arrays were scanned 
using the Agilent DNA Microarray Scanner at a 3 m scan resolution.

Characteristic of Golden Section

We contrast the secondary and pseudoknotted structures, which 
are verified by NMR or X-ray, with the test set's 480 sequences 
(nonfragment and nonredundant). The results of statistical analysis on 
these actual secondary structures indicate the number of domains, the 
3′-end of the group, the ratio of Group 1 to Group 2, and the ratio 
of Group 2 to Group 3. The number of sequences is indicated on the 
y-axis, and the length ratio of the 3′-end of the domain to the sequence 
is shown on the x-axis. In the finished structure, there are not enough 
complimentary bases to form a helix at one point.

Dynamic Algorithm

The helices and loops that make up secondary structures for RNAs 
are quickly produced along a hierarchical pathway, and the subsequent 
gradual folding of 3D tertiary structures would consolidate the 
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secondary structures. RNAs also fold when DNA is converted into RNA 
during transcription. As a result, we compute the secondary structure 
first before predicting pseudoknotted structures. As DNA is converted 
into RNA, we fold secondary RNA structures. Only trustworthy helices 
are recognised, and the length of RNA sequences is steadily expanded 
in accordance with the aforementioned golden rules.

Results
Transcriptomic Landscape of ESCC

To look for potential lncRNA correlations with ESCC, we 
performed genome-wide gene expression profiling of both coding 
genes and lncRNAs from ESCC and nearby nonneoplastic tissue. 
We first checked to see if these 7,419 noncoding and 27,958 coding 
RNA transcripts are grouped together and distinct from the samples 
of normal tissue. Next, we looked at the landscapes of the entire 
transcriptome as well as the total transcriptomic pattern (lncRNAs 
+ coding RNAs) from each sample. The general transitions from a 
particular normal to cancer state were also observed separately as a 
difference in the expression profile of either the lncRNA or the coding 
RNA. The landscape of the entire transcriptome may be changing due 
to a putative dynamic interaction between lncRNAs and coding RNAs, 
according to these observations.

Expression of lncRNAs in ESCC

Despite being widely produced throughout the genome, LncRNAs 
are a novel family of noncoding RNAs about which little is known about 
their functional properties. With the exception of a recent study of the 
overexpressed lncRNA AFAP1-AS1 in esophageal adenocarcinoma, 
high-throughput screening of lncRNAs from ESCC has received little 
research. 7,419 intergenic lncRNAs and other transcripts with unknown 
coding potential were evaluated in total, and 410 DE-lncRNAs were 
found in ESCC in comparison to nearby normal esophageal tissues. The 
ESCC Associated Long noncoding RNAs are the names we gave to the 
anonymous lncRNAs. Numerous malignancies have elevated HOTAIR 
lncRNA expression, and our investigation of ESCC shows that it is also 
markedly elevated. The differential expression of two more upregulated 
lncRNAs in ESCC was also validated by our research. The tests are split 
into two sections: one for pseudoknotted sequences and the other 
for mixed data of pseudoknot-free and pseudoknotted sequences 
to show the impact of our technique. Two data sets are picked. The 
first is the TT2NE data set for evaluating pseudoknotted structures. 
47 pseudoknotted sequences taken from PDB and PseudoBase make 
up this data set. The PKNOTS data set is an additional one for testing 
secondary and fictitious knotted structures. The 116 sequences in this 
data set comprise pseudoknots for the HIV-1-RT ligand RNA, viral 
RNAs, and 25 tRNA sequences that were randomly chosen from the 
Sprinzl tRNA database.

Both sensitivity and PPV are used to gauge how accurate an 
algorithm is. Assume that the genuine RNA structure contains RP (real 
pair) base pairs.

Discussion
We test two models to determine the impact of the GM approach 

on various models, then we compare the differences between the two. 
The PKNOTS data set is first run via the PKONTS and LZ algorithms, 
and the output of the results is then obtained. We next carry out the 
first stage of the GM method to dynamically fold sequences at the 
golden points to create the frame of secondary structures, choosing the 
stable helix with the least amount of energy at each fold. Then, using 
the same energy model and settings as before, we feed the partially 

folded sequences through the PKONTS and LZ algorithms. To get the 
statistics, we fold every sequence in the test set. Compared to the original 
LZ and PKNOTS algorithms, the updated LZ and PKNOTS algorithms 
both offer sensitivity gains of 2% to 3%. Compared to the PKNOTS 
algorithm, the enhanced LZ algorithm performs better (4.9%). In order 
to increase prediction sensitivity and decrease predicted redundant 
base pairs, the GM approach may also be used to other RNA structure 
prediction algorithms, according to the testing of enhanced PKNOTS 
and improved LZ.

Numerous sequences (such as Bioton, DF0660, DG7740, DI1140, 
DP1780, DV3200, and DY4840) have higher accuracy thanks to the 
updated LZ and PKNOTS algorithms, and this makes it possible for us 
to assess the impact of the golden mean feature. The TT2NE algorithm 
predicted more redundancy genera than other techniques. As an 
illustration, TT2NE predicts two pseudoknots even though GLV IRES, 
R2 retro PK, and 1y0q sequences only have one native pseudoknot. In 
contrast to the three anticipated by TT2NE, Bs glmS only naturally has 
two pseudoknots. Each algorithm's PPV and sensitivity percentages are 
displayed. The number of redundant genera is shown in the column 
Gen, and it exceeds the number of native genera. GR is the redundancy 
number in the anticipated genus. Average 1 is calculated as the sum of 
all base pairs successfully predicted over the entire database divided 
by the equivalent sum of native base pairs (average sensitivity) and the 
sum of base pairs correctly predicted.

Conclusion
Based on the statistical analysis of actual RNA secondary structures, 

we present a novel finding in this study that RNA folding follows the 
golden mean feature. Nearby to 0.382L, 0.5L, 0.618L, and L are the 
sequence's folding 3′-end sites. These key golden sequence points 
are listed above. With this trait in mind, we create a GM algorithm 
by dynamically folding RNA secondary structures in accordance with 
the aforementioned golden section sites and by creating pseudoknots 
by crossing subsequences. Utilizing thermodynamic data, we put the 
technique into practise and evaluate its efficacy using the PKNOTS 
and TT2NE data sets. For the PKNOTS data set, we first preprocess 
the sequence with the first GM step before obtaining the partially 
folded sequence output to feed into the PKNOTS and LZ algorithms. 
The two algorithms then get 2% to 3% better. This is due to the half 
folded sequence serving as its structural framework. In other words, 
folding at the golden spots regulates the course of folding and therefore 
inhibits the development of some duplicate structures. In order to 
increase prediction accuracy and decrease projected duplicated base 
pairs, preprocessing of GM can also be used to other RNA structure 
prediction algorithms. In comparison to Mfold, HotKnots, McQfold, 
ProbKnot, and LZ for the TT2NE data set, GM has higher sensitivity 
and more predicted pseudoknots. Over Mfold, HotKnot, ProbKnot, 
and LZ, the PPV of GM is superior. According to these results, the 
GM approach performs well in terms of forecasting secondary and 
pseudoknotted structures. When compared to other RNA structure 
prediction algorithms, the sensitivity and PPV of the GM method 
are superior. The experimental outcomes show the RNA folding 
regulations from a fresh perspective that is similar to natural folding.
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