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Abstract

Engineering grade intermetallic TiAl based alloys has been established as high performance alloys when 
compared to more traditional super alloys and other Ni based alloys thanks to excellent density/performance ratio.

Objective: This study aims to investigate new selected alloys compositions toward their use as structural 
materials for automotive and aeronautic industry.

Methods: Nominal compositions of Ti-45Al-5Nb-4V-0.5Mo-0.1Si, Ti-45Al-5Nb-4V-0.5Mo-0.5Si and 
Ti-45Al-5Nb-4V-0.3Si (at %) were casted and heat treated resulting in y and a/y microstructure analyzed using 
scanning electron microscopy. To determine formability and mechanical behaviour at elevated temperature, hot 
compression tests were conducted at 1323 K and strain rate of 0.05 s−1 on deformation dilatometer DIL A/D 805.

Results: Microstructure imaging before and after deformation and stress strain curves were obtained. DRX 
(DXR) evidence was further explicated by exploitation of experiment data and calculation of dynamic recrystallization 
volume fraction of DRXed phases.

Conclusion: Results shows that mechanical performance of intermetallic TiAl alloys are microstructure 
depended. Casted Ti-45Al-5Nb-4V-0.5Mo-0.1Si alloy have promising mechanical performance and is subject to 
improvement toward application.
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Introduction
TiAl based alloys represent an important class of alloys that exhibit 

a unique combination of physical and mechanical properties which 
include low density of 3.7 g/cm3-4.7 g/cm3, high elastic modulus, high 
creep resistance and good resistance against oxidation and corrosion 
which promote this binary alloy as a serious candidate to replace 
conventional structural materials in energy, automotive and aerospace 
industries [1-3]. However, after more than three decades of intensive 
research, very few TiAl based alloys did obtain a satisfactory level of 
maturity to be used for critical components in turbines and aircraft 
engines, mainly due to reduced toughness and low ductility at room 
temperature in comparison to those of conventional structural 
materials [4].

In order to improve mechanical properties and expand the 
application of TiAl based alloys, corresponding relations between 
mechanical properties and microstructure have been investigated 
widely, in the same context, a great number of studies have been made 
on the fracture mechanism of TiAl based alloys [5-11]. 
However, studies on the compressive behaviour are relatively 
rare. A large difference of deformability between tensile and 
compression tests was revealed, this variance is caused by the 
difference of stress and strain conditions. CT Liu showed that the yield 
strength was a function of the test temperature measured by 
compression tests at various test temperatures [11]. Pu, reported that 
the compression strength of Ti-Al-Cr-V alloy will increase at 1170°C 
when the strain rate changes from 0.001 s-1 to 100 s-1 [12].
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    Several approaches have been made to overcome the insufficiencies 
of TiAl based alloys. Among these methodologies, element alloying, 
which consist of introducing innovative elements into TiAl based alloy 
composition, has received considerable attention in the purpose of 
meet the optimal composition [13,14].

In this work, microstructure of heat treated, Ti45Al5Nb4V0.1Si and 
Ti45Al5Nb4V (Mo, Si (at % alloys were studied and hot 
deformation behaviours were discussed.
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Materials and Methods
The alloys with different compositions have been prepared from

high purity elements (>99.8% purity). The prepared mixtures were arc
melted with an induction furnace at least three times to ensure good
homogeneity of the samples. The melting was conducted in a pure
argon gas atmosphere.

As titanium and aluminium are very prone to oxygen contamination
that may seriously affect the result of our elaboration, pure elements
grits were cleaned in nitric acid (HNO3:1M), rinsed and dried, then

weighed in stoichiometric proportions before introduction to the
elaboration furnace.

Samples were heat treated after furnace elaboration, considering the
affinity between titanium and aluminium with oxygen, the heat
treatment was done under argon atmosphere. Samples were heated to
1200°C for 16 hours followed by slow cooling inside the furnace.
Table 1 gives a summary of chemical composition and processing of
prepared alloys.

Alloy (% at) Processing

Ti-45Al-5Nb-4V-0.3Si Induction melting+Heat treatment 1200°C/16 h

Ti-45Al-5Nb-4V-0.5Mo-0.1Si

Ti-45Al-5Nb-4V-0.5Mo-0.5Si

Figure 1 expose the starting microstructure heat treated of
Ti-45Al-5Nb-4V-0.3Si alloy. The material shows a nearly lamellar
structure composed by large colonies of γ/α2 along with coarse γ
phase, Energy Dispersive Spectra (EDS) pointed at +1, +2 and +3 and
listed in Table 2 summarize concentrations of addition elements in the
alloy. Nb as addition element is homogenously spread across both the
γ/α2 and the γ phase while vanadium and silicon preferentially
positioned in the γ phase. XRD pattern where γ-TiAl and α2-Ti3Al
phases are confirmed with the identification of β phase in significant
less extend.

Microstructure of second alloy Ti-45Al-5Nb-4V-0.5Mo-0.1Si is
depicted (Figures 2 and 3). Similarly to previous material, the
microstructure exhibit two main regions. XRD analysis, presented in
Figure 4, confirmed composition is mainly γ/α2 along with γ phase and
β phase. In this case, the addition of molybdenum and reduction of
silicon content, comparatively to previous alloy, had qualitatively
enlarged lamellar γ/α2 and decreased γ phase ratio. It is generally
admitted that Mo addition has a positive impact on ductility [20]. EDS
results are summarized in Table 2.

This depict microstructure of Ti-45Al-5Nb-4V-0.5Mo-0.5Si,
elevation of silicon content to 0.5% (at %) comparatively to 0.1% (at
%) in previous second alloy impacted initial, heat treated
microstructure with formation of long precipitation chain, EDS
analysis summarized revealed high silicon concentration and
confirmed precipitation nature of the ribbons that have subsisted to the
heat treatment.

Alloy Ti (at %) Al (at %) Nb (at %) V (at %) Si (at %) Mo (at %)

Ti-45Al-5Nb-4V-0.
3Si

+1 46.97 44.85 7.58 0.52 0.09 -

+2 49.89 35.73 8.80 4.27 0.79 -

+3 48.26 43.30 7.18 1.10 0.12 -
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In order to perform metallographic observations, samples were 
sectioned, polished and observed by optical and Scanning Electron 
Microscopy (SEM). Alloys microstructures were studied using 
Olympus LEXT OLS4100 laser scanning microscope and Hitachi SU 
8230 scanning electron microscope equipped with EDX (Energy 
Dispersive X-ray) analysis used to determine phase composition (semi 
quantitative).

In order to evaluate compressive behaviour, samples with 5 mm in 
diameter and 8 mm in height were cut from the prepared mass. 
Isothermal compression tests were conducted on a quenching 
dilatometer DIL 805A/D machine with argon atmosphere at 
temperature of 1323 K and strain rates of 0.05 s-1.

Before the compression, each Specimen was heated at a rate of 5 
k/s and maintained for 5 min at target temperature for homogenization. 
The maximum strain obtained in the tests was 50%. Once compression 
ended, the specimens were quenched to room temperature 
immediately with cooling rate of 30 C/s. True stress curves were 
obtained.

Results and Discussion

Starting microstructures
Several studies have confirmed that initial microstructure of TiAl 

alloys, before deformation, has a significant role in final mechanical 
properties, following this aspect, microstructural assessment was 
carried out for the casted alloys [15-19].

Table 1: Chemical composition (% at) and processing of prepared alloys.



Ti-45Al-5Nb-4V-0.
5Mo-0.1Si

+1 46.37 36.39 10.49 4.59 0.92 0.75

+2 46.48 35.73 8.18 1.24 0.15 -

+3 46.58 35.90 10.47 4.87 1.01 1.15

Ti-45Al-5Nb-4V-0.
5Mo-0.5Si

+1 44.89 24.17 9.96 2.91 18.08 -

+2 46.83 35.73 7.70 0.98 0.55 -

+3 48.30 35.95 10.05 4.56 0.99 0.14

Table 2: Results of energy dispersive spectra of the alloys.

Figure 1: Scanning Electron micrographs (SE mode) 
of Ti-45Al-5Nb-4V-0.3Si alloy.

Figure 2: Scanning Electron micrographs (SE mode) 
of Ti-45Al-5Nb-4V-0.5Mo-0.1Si alloy.

Figure 3: Scanning Electron micrographs (SE mode) of
Ti-45Al-5Nb-4V-0.5Mo-0.5Si alloy.

Figure 4: XRD patterns of (a). Ti-45Al-5Nb-4V-0.3Si, (b).
Ti-45Al-5Nb-4V-0.5Mo-0.1Si, (c). Ti-45Al-5Nb-4V-0.5Mo-0.5Si.

Deformation behaviour
Compression proprieties: The true stress strain curves of various

TiAl based alloys less than 1323 K and 0.05 s-1 are illustrated in
Figure 5. It can be seen that most of flow stress trends increase to peak
value before decreasing until a steady state is reached. The
Ti-45Al-5Nb-4V (Mo, Si) samples deformed at 1323 K and 0.05 s-1

exhibit greater effect of DRX softening where Ti-45Al-
Ti-45Al-5Nb-4V-0.3Si specimen shows more steady state curves.

It is well known that deformation mechanisms at hot temperatures
rely on dynamic softening and work hardening processes. The hot
compression process can be separated into three stages: At initial stage
of deformation, flow stress increases rapidly due to increasing density
of dislocations till a peak stress is reached; at this stage, work
hardening exceeds dynamic softening which generates the sharply
increasing tendency. Successively, the deformation energy
accumulated with the growth of deformation strain will offsets the
work hardening and brings forward dynamic softening mechanism
which diminishes the dislocation density, inducing decrease in true
stress. This deceasing tendency at this stage is characteristic of
dynamic recrystallization over dynamic recovery during deformation
[21,22]. When the work hardening and dynamic softening reach a
dynamic equilibrium, the dislocation density remains relatively
constant, and a steady state flow stress is obtained as shown on the
curves.

Figure 5: True stress true strain curves of tested alloys under 1323
K and 0.05 s-1, WH stage refers to work hardening stage, DRX stage
refers to dynamic recrystallization stage.

As the true stress of the alloys increases with the increase in the
strain rate in the first work hardening stage. The alloys exhibit
significant difference in the ultimate true stress, it is observed that
Ti-45Al-5Nb-4V (Mo, Si) alloys shows higher strength than
Ti-45Al-5Nb-4V-0.3Si. Because the alloys have similar overall
starting microstructures, the differences in the compression behaviour
could be mainly due to the difference in solid solution of alloying
elements such as Mo and V and difference in dislocation density.
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Microstructures after deformation: This shows microstructures
of hot compressed alloys, deformed at 1323 K and 0.05 s-1.

The stressed materials exhibit deformed microstructure and heavily
elongated γ/α2 colonies in direction perpendicular to force application
in all three alloys.

In Figure 6, Ti-45Al-5Nb-4V-0.3Si lamellar colonies are shown
elongated perpendicularly to compression force. Different dislocation
movement and slips systems were activated to process the deformation
resulting twisting and bending in multiples orientations. The lack of
clear dynamic recrystallisation manifestation suggests that
compression at 1323 K and 0.05 s-1 didn’t provide sufficient energy to
reach recrystallization stage.

With addition of molybdenum, Ti-45Al-5Nb-4V-0.5Mo-0.1Si alloy
shows, in Figure 7, deformed microstructure with evidence of
dynamic recrystallization. Both α2 and γ phases undergo driving force
for recrystallization resulting from the energy of deformation [23].
Recrystallization driving force are dependent to deformation
subjected, therefore, in γ/α2 colonies with higher deformation (i.e.
higher forces) dynamic recrystallization took place and fine DXR
grains are formed [24,25].

Figure 8 show microstructure of Ti-45Al-5Nb-4V-0.5Mo-0.5Si
after hot compression test. The long precipitate chains were fractured
into small coarse grains. Similarly to previous alloy, dynamic
recrystallization process was identified with appearance of new fine
DXR grains. When recrystallization driving force are strong enough,
the precipitates act as nucleation sites for recrystallization and enhance
microstructural refinement [26,27].

Figure 6: Scanning electron micrographs of 
Ti-45Al-5Nb-4V-0.3Si alloy after the compression test.

Figure 7: Scanning electron micrographs of
Ti-45Al-5Nb-4V-0.5Mo-0.1Si alloy after the compression test.

Figure 8: Scanning electron micrographs of
Ti-45Al-5Nb-4V-0.5Mo-0.5Si alloy after the compression test.

Dynamic recrystallization volume fraction: Dynamic
Recrystallization (DRX) commence with the increase of dislocation
density which is a thermally activated process [28]. With further
plastic deformation heat, more potential DRXed nucleus will form
resulting in new recrystallized grains [29]. DRX behavior can be
further examined with the calculation of the recrystallization volume
fraction using the modified Avrami type equation:

Where XDRX is the volume fraction of DRXed grains, ε* is the
strain for maximum softening rate; εc is the critical strain and k and n
are material constants [30].

From equation (1) above, it is shown that critical strain is important
in calculation and prediction of microstructural DRX evolution.
Several mathematical models have been proposed by researchers to
spot the critical condition for the commencement of dynamic
recrystallization using flow stress curves. In this work, the work
hardening rate (θ=∂σ/∂ε) was calculated [31,32].

The θ-σ curve of Ti-45Al-5Nb-4V-0.5Mo-0.1Si alloy under 1323 K
and strain rate of 0.05 s-1 is shown in Figure 9. The work hardening
curve show typically four stages: stage I begins from initial stress to
the critical stress (σc), where the value of θ decreases sharply, and the
inflection point on the θ–σ curve demonstrates the onset of DRX.
Stage II covers the transition between the DRX commencements
(corresponding to σc) to the peak stress, where θ hits zero. Stage III is
where θ reaches the lowest value indicates maximum softening and
DRX prevalence region, it begins at σp and ends at σ*. Last stage IV is
where equilibrium between work hardening and DRX softening occurs
and θ=0 [33, 34].

Figure 9: Hardening rate curve of Ti-45Al-5Nb-4V-0.5Mo-0.1Si
alloy under 1323K and strain rate of 0.05 s-1.
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J Liu proposed that flow stress function of DRX can be expressed
as:

Where σp is the peak stress and σs is the steady state stress.

Based on equation (1), the below is obtained:

With the condition of 1323 K and 0.05 s-1, the relationship between
ln [-ln (1−XDRX)] and ln [(ε−εc)/ε*] is plotted and the values of n and k
are determined to be 1.021 and 0.229, respectively.

Following the findings, volume fraction of
Ti-45Al-5Nb-4V-0.5Mo-0.1Si alloy in testing conditions can be
expressed as:

DRX volume fraction is shown in Figure 10 where it can be seen
that the dynamic recrystallization will not occur at strain less than the
critical strain εc. The volume fraction of DRXed grains increases as
the strain increases.

Figure 10: DRX volume fraction curve of
Ti-45Al-5Nb-4V-0.5Mo-0.1Si alloy under 1323 K and strain rate of
0.05 s-1.

Conclusion
In an effort of assessing addition element impact on mechanical

proprieties in intermetallic TiAl based alloys and toward mechanical
performance enhancement, alloys with nominal composition of
Ti-45Al-5Nb-4V-0.5Mo-0.1Si, Ti-45Al-5Nb-4V-0.5Mo-0.5Si, and
Ti-45Al-5Nb-4V-0.3Si (at %) were casted, heat treated, the obtained
materials were subsequently mechanically assessed using hot
compression test at 1323 K and strain rate of 0.05 s-1. The resulting

microstructures were further evaluated through microstructural
analysis.

The following summarizes key finding of the study:

• The nearly lamellar microstructure exhibits typical compression
behaviour of intermetallic TiAl alloys with dynamic flow and
softening features seen on the true stress true strain curves.
Under hot compression of 1323 K and strain rate of 0.05 s, dynamic
recrystallization behavior was not obviously reached for
Ti-45Al-5Nb-4V-0.3Si suggesting that deformation activation
energy of the alloy is larger than the other casted alloys. This
observation further indicates that Ti-45Al-5Nb-4V-0.3Si alloy tend
to have low hot workability when compared to Ti-45Al-5Nb-4V
(Mo, Si) tested alloys for which dynamic recrystallization was more
obvious.

• Molybdenum addition at 0.5% (at %) improve general compression
behavior. The Ti-45Al-5Nb-4V-0.5Mo-0.1Si alloy exhibit highest
strength, flow stress decreases significantly toward steady state with
increasing strain, indicating best hot workability behaviour.
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