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Abstract
Most coronaviruses infect animals including bats, birds and mammals, which act as hosts and reservoirs for the viruses, but the viruses 
can sometimes move host species and infect humans. Coronaviruses were first identified as human pathogens in the 1960s and now 
there are seven types known to infect humans. Whilst four of these types cause mild-to-moderate respiratory disease, the other three may 
cause more severe and possibly even fatal disease in vulnerable individuals particularly, with the most recent SARS-CoV-2 pandemic 
being associated with Severe Acute Respiratory Syndrome (SARS) in many infected people. The aim of the present study was to 
evaluate the potential of a unique Low Molecular Weight Dextran Sulphate (LMW- DS) clinical stage drug, ILB®, to inhibit infection of 
human cells by the NL63 coronavirus assessed by immunofluorescence of viral particles, and also to see if the drug directly blocked 
the interaction of the SARS-CoV-2 viral spike protein with the ACE2 receptor. Furthermore, we evaluated if ILB® could modulate the 
downstream consequences of viral infection including the reactive cytokine release from human microglia induced by various SARS-
CoV-2 variant spike proteins. We demonstrated that ILB® blocked ACE2:spike protein interaction and inhibited coronaviral infection. ILB® 
also attenuated the Omicron-induced release of pro-inflammatory cytokines, including TNFα, from human microglia, indicating control 
of post-viral neuroinflammation. In conclusion, given the safety profile of ILB® established in a number of Phase I and Phase II clinical 
trials, these results highlight the potential of ILB® to treat patients infected with coronaviruses to both limit infectivity and attenuate the 
progression to severe disease. There is now an opportunity to translate these findings quickly by the clinical investigation of drug efficacy.
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Introduction
Coronaviruses are a large family of enveloped, positive-stranded 

humans. For example, the highly transmissible SARS-CoV-2 virus causes 
Coronavirus Disease (COVID-19) which causes a mild to moderate 

can become dangerously ill, developing Severe Acute Respiratory 

that can result in organ damage [1]. The global pandemic of COVID-19 

economic consequences that remain burdensome [2]. By August 2022 

of those infected.

There is now a wealth of information published on the SARS-
CoV-2 virus that describe the host receptors, virus transmission, virus 
structure-function relationships, pathophysiology, co-morbidities, 
immune response, treatment and the most promising vaccines and 
anti-viral drugs [3,4]. This explosion of knowledge, and in particular 
understanding of the mechanisms of SARS-CoV-2 entry into host 
cells through binding of the viral Spike (S) protein to a key receptor, 
Angiotensin-Converting Enzyme 2 (ACE2), has led to the development 
of a wide range of vaccines and other anti-viral drugs that are now 
controlling disease spread to some extent [5].

However, successive waves of disease derived from emerging and 
re-emerging viral variants will ensure the persistence of this disease 
in the global population for the foreseeable future. Simultaneously, 
persistent and often debilitating, sequelae are being increasingly 
recognized in convalescent individuals, with fatigue, malaise, dyspnea, 
defects in memory and concentration and a variety of neuropsychiatric 
syndromes as the major manifestations, and several organ systems can 
be involved. Many of these post-viral infection adverse consequences 
can be linked to neuroinflammation. The socio-economic legacy of this 

so-called ‘long COVID’ or post-viral syndrome is only now beginning 
to be realised [6,7] and it is evident it will also present major health and 
economic challenges.

There is global need for new and improved adjunct anti-viral 
agents and, in particular, those that can also reduce the symptoms 
of post-viral syndrome. Here we report the potential of a new class 
of regenerative medicine, a unique Low Molecular Weight Dextran 
Sulphate (LMW-DS) called ILB®, to have broad spectrum anti-viral 
effects on the infection capability and the downstream pathological 
processes initiated by coronaviruses and, in particular, variants of the 
SARS-CoV-2 virus.

Materials and Methods
ILB®

ILB® is the sodium salt of LMW-DS containing 16%-19% sulphur with an 
average MW of 5 kDa (International Publication No. WO 2016/076780, 
ILB® is in Phase II development to treat the neurodegenerative condition 
ALS) [8]. ILB® was supplied as the sodium salt dissolved in 0.9% NaCl at 
100 mg/ml concentration.

Experimental procedures

Antiviral activity and cytotoxicity of ILB® against human 
coronavirus NL63: The antiviral activity of eight dilutions of ILB® was 
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explored by pre-incubation with LLC-MK2 cells (LLC-MK2 (rhesus 
monkey kidney-derived cells) (ATCC CCL-7)) for 1hr before virus 
addition. Experimental controls were (a) Uninfected untreated cells, 
(b) Infected untreated cells or (c) Positive control drug (Remdesivir 
(Selleckchem S8932 PHR1258)). Human coronavirus NL63 (BEI 
Resources NR-470) plus ILB® were left on the cells for the entire 
duration of the experiment (48 hrs). The cytotoxicity of the same range 
of concentrations of ILB® was determined by MTT assay.

LLC-MK2 cells were seeded in 2 × 96-well plates (one for inhibition 
and one for cytotoxicity) in complete media (DMEM from Gibco, Cat. 
No. 61965026, supplemented with 10% FBS (Gibco, Cat. no. 10500064) 
and 1 ×penicillin/streptomycin (Gibco, Cat. no. 15070063) at 4,000 
cells/100 µl/well. After seeding, the plates were incubated at RT for 

following day. Virus stocks were diluted into supplemented media 
(DMEM from Gibco, Cat. no. 61965026 supplemented with 2% FBS 
(Gibco, Cat. No. 10500064 and 1 × penicillin/streptomycin (Gibco, 
Cat. No. 15070063), to reach an MOI of 2.0. To calculate MOI, it was 
estimated that the cell number had doubled to 8,000 cells/well since 
plating the day before.

Following ILB® dilution and mixing, the cells were preincubated for 

ml, 0.014 mg/ml, 0.041 mg/ml, 0.123 mg/ml, 0.370 mg/ml, 1.111 and 
10.000 mg/ml or Remdesivir at 0.009 µM, 0.027 µM, 0.082 µM, 0.247 
µM, 0.741 µM, 2.222 µM, 6.667 µM and 20.000 µM. After 1 hr, media 
was removed from the cells and replaced with 50 µl of virus or media 
(uninfected untreated control) immediately followed by 50 µl of the 
ILB® dilutions at twice the final concentrations, as they become diluted 
to the final concentrations by an equal volume of virus or media. Plates 

and/or the virus remained with the cultured cells for the entire duration 
of the experiment. After 48 hrs, the infection plates were washed with 
PBS, fixed for 30 minutes with 4% formaldehyde, washed again with 
PBS, and stored in PBS at 4ºC until staining.

For the infectivity readout, cells were immunostained for relevant 
viral particles. Briefly, any residual formaldehyde was quenched with 50 
mM ammonium chloride, after which cells were permeabilised (0.1% 
Triton× 100) and stained with an antibody recognising double-stranded 
RNA (Caltag Medsystems Ltd, SCI-10010200). The primary antibody 
was detected with an Alexa-488 conjugate secondary antibody (Life 
Technologies, A11001), and nuclei were stained with Hoechst. Images 
were acquired on an CellInsight C × 5 high content platform (Thermo 
Scientific) using a 4 ×objective, and percentage infection calculated 
using CellInsight C × 5 software (infected cells/total cells× 100).

For a cytotoxicity test, media was removed from the cells and 
replaced with 50 µl of supplemented media, followed by 50 µl of the 
diluted formulations or media. After mixing, the plates were incubated 

MTT assay. Briefly, the MTT reagent (Sigma, M5655) was added to the 

the precipitate solubilised with a mixture of 1:1 Isopropanol:DMSO for 
20 minutes. The supernatant was transferred to a clean plate and signal 
read at 570 nm. 

Normalised percentages of inhibition were calculated using the 
following formula: Normalized % inhibition 

Where appropriate, IC50 values were generated by iterative curve 

fitting according to a Logistic equation using KaleidaGragh software 
(v5.0; Synergy Software).

Percentages of cytotoxicity were calculated using the following 
formula:

Where appropriate, TC50 values were generated by iterative curve 
fitting according to a Logistic equation using KaleidaGragh software 
(v5.0; Synergy Software).

ILB® inhibition of the interaction between SARS-CoV-2 Spike 
protein and the ACE2 receptor:The Ray Biotech® Life COVID-19 
Spike-ACE2 binding assay kit (Catalogue Number: CoV-SACE2) was 
used exactly as described in the manufacturer’s instructions (Ver 1.6) 
to assess the ability of a range of concentrations of ILB®, between 0.3 
µg/ml and 600 µg/ml, to disrupt the interaction between SARS-CoV-2 
Spike protein and ACE2. 

ILB® attenuation of Coronavirus-stimulated cytokine release 
from human microglia: Peripheral Blood Mononuclear Cells 
(PBMCs) were isolated from three healthy donors through SepMate 
density centrifugation (Stem Cell Technologies, 85450) with Ficoll-
Paque PLUS (Cytiva 17-1440-03). Monocytes were purified from the 
PBMC population using the EasySep Human monocyte enrichment 
kit (STEMCELL Technologies; 19059), plated in 96-well plates and 
differentiated into microglia (iMDM) with the addition of cytokines; 
M-CSF, GM-CSF, NGF-β, CCL2 and IL-34 for 5 days at 37ºC.

iMDM were pre-incubated in the absence or presence of ILB® 
(600 mg/mL) for 30 minutes prior to the addition of recombinant 
SARS-CoV-2 spike protein (‘original [Wuhan]’ (Acro Biosystems SPN 
C52H9), ‘Delta’ [B.1.617.2] (Acro Biosystems SPN-C52He), ‘Omicron’ 
[B.1.1.529] (Acro Biosystems SPD-C522e); (1.0 mg/mL or 5.0 mg/
mL) in the absence or presence of cross-linker (Abcam; ab18184), 
and cultured for a further 6 hrs or 20 hrs. Positive control stimulation 
of microglia was also performed by the addition of LPS (100 ng/mL; 
Invivogen tlrl-b5lps) and, where indicated, BzATP (100 µM) stimulation 
for the final two hours of the culture period for 6 hrs or 20 hrs. After 
6 and 20 hrs, the cell culture supernatants were collected and stored at 
-20ºC for subsequent quantification of the levels of IL-1β, IL-6, MCP-1 
and TNFα by Luminex (R and D Systems; LXSAHM-04).

Results
Antiviral activity and cytotoxicity of ILB® against human 
coronavirus NL63

Table 1: EC50, EC90, TC50, TC90, SI50 (=TC50/EC50) and SI90 (=TC90/EC90) values 
for NL63 against ILB® and Remdesivir. ND: Not determined, due to the inability to 
extrapolate a curve or the Hill Slope value from the input values.

25 minutes for even distribution, and then at 37ºC, 5% CO until the 

21 hr at 37ºC in air plus 5% CO with ILB® concentrations at 0.005 mg/

were then incubated for 48 hrs at 37ºC in air plus 5% CO , and the ILB® 2

for 48 hrs at 37ºC in air plus 5% CO . Cytotoxicity was detected by 2

2cells for 2 hrs at 37ºC, 5% CO , after which the media was removed and 

Table 1 displays the EC50, EC90, TC50, TC90 and Selectivity Index 
(SI50) and SI90 for ILB® and the Remdesivir control. Inhibition of 
human coronavirus NL63 infection was observed for both the test 
and control formulations, with an EC50 of 5.90 mg/ml for ILB® and 
1.32 μM for Remdesivir. Cytotoxicity was observed only at the highest 
concentrations of ILB®, with TC50 of 56.5 mg/ml. No significant 
cytotoxicity was observed at any of the concentrations of Remdesivir 
tested (Table 1). 

 -

5.9 56.5 9.6 37.1 192.9 5.2

 -

Remdesivir 1.32 ND ND  -  -  -

ILB®

EC50
 (mg/ml)

TC50 SI50 EC90 TC90 SI90 (mg/ml)  (mg/ml)  (mg/ml)

EC  (µM)50 TC50
(µM) SI50 EC90

(µM) TC90 (µM) SI90
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The graphs in Figure 1 below display the percentage of inhibition 
of human coronavirus NL63 infection at different ILB® concentrations 
compared to Remdesivir. Sample values in each plate were normalised 
to the plate internal controls, where 100% inhibition was derived 
from the average of the negative control (untreated uninfected) and 
0% inhibition was derived from the average of the positive control 
(untreated infected). The x axes show compound dilutions (mg/ml 
[ILB®] or μM [Remdesivir]). The curves represent the best fit of the 
logarithm of compound dilution vsersus the normalised percentage 
of inhibition (variable slope). Cytotoxicity is displayed in grey, with 
values normalized to the plate internal control (untreated cells, 100% 
viability). Percentages of infection and cytotoxicity relative to each ILB® 
concentration are shown in the Appendix as Supplementary Tables S1 
and S2 respectively (Figure 1).

ILB® inhibition of the interaction between SARS-CoV-2 

Spike protein and the ACE2 receptor: In each of three independent 
experiments ILB® reduced the interaction between SARS-CoV-2 spike 
protein and ACE2 (Figure 2).

ILB® attenuation of SARS-Cov-2 variant spike protein-
stimulated cytokine release from human microglia: Figures 3 and 4 
show that in the absence of LPS, the ‘Omicron’ Spike protein (5.0 mg/
mL, in the presence of cross-linker evoked an increase in the levels of 
TNFα released from microglia and this was reduced by the presence of 
ILB® (see Donors 1, 2 and 3 at 20 hrs in Figure 3 and Figure 4). However, 
a relatively low concentration of LPS (10 ng/mL) in the presence of 
the ‘Wuhan’, ‘Delta’ or ‘Omicron’ spike proteins evoked a significant 
increase in IL-6 and TNFα release that was reduced by the presence of 
ILB® (see Donor 1 at 20 hrs; Donor 2, at 6 hrs and 20 hrs; Donor 3 at 20 
hrs), and an increase in IL-1β that was reduced by the presence of ILB® 
(see Donor 2 at 20 hrs) (Figures 3 and 4).

Figure 1: The percentage of inhibition of human coronavirus NL63 infection 
by ILB® and Remdesivir (black lines) at different compound concentrations. 
Cytotoxicity is displayed in grey.
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Figure 2:
Each bar represents the mean data from at least 3 replicate wells.

® The impact of various concentrations of ILB upon SARS-CoV-2 spike protein interacting with ACE2 assessed using the Ray Biotech® Life ELISA assay. 
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C

Figure 3:
presented are mean+SD arising from triplicate cultures. Data presented is from 3 individual Donors (D1-3).

 Effect of SARS-CoV-2 variant spike protein (Wuhan, Delta and Omicron) on cytokine release from iMDM in the absence or presence of ILB®. Data 
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Figure 4:
from 3 individual donors (D1- 3).

LPS may remain), and whilst others used mammalian [21-24] or insect 
cell line-derived spike protein the potential for bacterial contamination 
remains. Although there are differences in the source of Wuhan spike 
protein used in previous studies compared to the present study, the 
SARS-CoV-2 spike proteins used in the present study are generated 
using mammalian expression systems, and furthermore their direct 
ability to bind ACE2 has been verified using SPR analysis and also a 
spike protein binding assay to mammalian cells that was reversible by 
anti-spike protein neutralising antibodies [27]. Similar validation is 
evident for the delta and omicron spike proteins used in the present 
study. It is therefore of interest that the Wuhan and Delta spike proteins 
did not evoke evident cytokine release from the iMDM. In contrast, the 

an attempt to recapitulate the native spike presentation to the surface of 
the cell, enhanced consistently TNFα release from the iMDM cells and 
of potential therapeutic relevance, the enhanced release of TNFα was 
reduced consistently by ILB®. An ability of ILB® to reduce the release 
of pro-inflammatory cytokines from virally ‘primed’ microglia has 
relevance to potential beneficial effects of ILB® to treat numerous post-

Discussion
Under the conditions tested, ILB® displayed neutralising activity 

against infection by human coronavirus NL63 when pre-incubated 
with the cells for 1 hr prior to infection, with an EC50 of 5.90 mg/ml. 
Cytotoxicity was observed only at the higher concentrations of ILB®, 
with a TC50 of 56.5 mg/ml. The ability of ILB® to prevent cell infection 
is supported by the observation of a direct inhibition of the interaction 
between SARS-CoV-2 spike protein and ACE2. Taken together, this 
evidence of anti-viral activity would be predicted to be beneficial to 
patients by reducing the ability of the SARS-CoV-2 virus to gain entry 
to cells. The anti-infective activity of ILB®, a clinical grade drug with a 
proven safety profile in humans [8], points to its substantial potential 
as a new adjunct anti-viral drug to help counter the uncontrolled 
growing global burden of Coronavirus disease. Anti-viral drugs can 
be divided into two major categories: those directed against the host 
and those directed against the vector. Anti-viral compounds directed 
against host targets are of interest in the search for broad spectrum 
anti-viral compounds that may be able to address present or future 
unknown viral emergences, since they can be directed at pathways that 

micron spike protein (5.0 mg/mL), in the presence of cross-linker in O

 ILB®  attenuation of SARS-CoV-2 Omicron spike protein-stimulated TNFa release from iMDM. Data presented are mean +SEM arising from cells derived 
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Conclusion
In conclusion, ILB® displays potential as a host-directed anti-viral 

drug that inhibits Coronavirus infection and may be a useful adjunct 
anti-viral treatment. In addition, the anti-inflammatory activity of ILB® 
suggest this drug also has potential to alleviate some of the long term 
consequences of viral infection in central and peripheral tissues. The 
clinical stage of development of ILB® offers the opportunity to test the 
anti-viral and post-viral syndrome activities summarised in clinical 
trial to determine if the results translate for the benefit of patients 
infected with Coronaviruses.
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are common to multiple virus types. Of importance, compounds that 
target the host pathway exploited by viruses may be expected to show 
a higher barrier to resistance, which is of importance for RNA viruses 
with a relatively high tendency to mutate, such as Coronaviruses. 
Highly sulphated Glycosaminoglycans (GAGs) like heparan sulphate 
are found in and around animal cells and are involved in the infection 
of many pathogenic enveloped and non-enveloped viruses, including 
Coronaviruses like SARS-CoV-2 [9-12]. These viruses utilize cell 
surface glycoconjugates as cellular receptors for attachment, which 
enable them to take their first step toward establishing infection. The 
binding of these viruses to cell surface heparan sulphate could be 
specific but also could be due to nonspecific electrostatic interactions 
of biological relevance, either possibility suggests the application of 
heparan sulphate mimetics as anti-viral therapies. Indeed, soluble 
GAGs, especially heparin mimetics, have been used as competitive 

LMW-DS used in this study, ILB®, acts as a soluble heparin mimetic 
that can offer a competitive binding site for heparin-binding moieties, 
thereby preventing receptor interactions [16]. It therefore seems 
probable that, in this instance, soluble ILB® is acting competitively with 
cell surface heparan sulphate to bind virus and block cell attachment 
and internalization via spike protein:ACE2 receptor interactions. 
Extensive preclinical and clinical studies, reported by us elsewhere 
[8,16-19] suggest that ILB® may also be a useful tool to counteract 
the post-viral syndrome that is often associated with Coronavirus 
infection. Accordingly, ILB® activates natural repair processes to control 
hyperinflammation and thrombosis, normalise cellular metabolism 
and remodel damaged tissues [16]. Thus, uniquely, ILB® acts as a 
broad acting anti-viral drug that targets every step in the progression 
of viral disease from infection through to cellular pathology. This 
inference of restoration of cellular and tissue homeostasis in humans 
is further supported by the studies reported here on ILB® control of 
cytokine release from human microglia stimulated with the Omicron 
spike protein variant that suggest the ability of ILB® to counteract 
chronic viral neuroinflammation. In contrast to previous reports [20-
26] by other research groups investigating the ‘Wuhan’ SARS-CoV-2 
spike protein with myeloid cells, a clear response to ‘Wuhan’ SARS-
CoV-2 spike protein-evoked cytokine response (proposed to act via 
TLR4 [20-24] was not evident in our studies [20,21] using myeloid 
induced-monocyte derived microglia (iMDM). LPS contamination of 
preparation remains a major challenge when studying TLR biology 
[25] especially for bacteria derived proteins [20] (where trace levels of 

Figure 4: ILB® activities indicating potential as an anti-viral/post-viral therapy. 
Note: ARDS: Acute Respiratory Distress Syndrome; SIRS: Systemic Inlammatory
Inlammatory Response Syndrome.
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