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Introduction
The neural network is then trained using the dataset, adjusting its 

weights and biases iteratively to minimize the error between predicted 
and desired outcomes [1]. After training, the model is validated using 
a separate dataset to evaluate its generalization capability. Finally, the 
model is integrated into an expert control system, allowing real-time 
data acquisition, prediction, and control actions.

The neural network-based expert control system offers the 
potential to enhance the electrolytic process in zinc hydrometallurgy by 
improving process efficiency, stability, and product quality. It enables 
proactive control and optimization based on real-time predictions and 
feedback [2]. The system can also adapt to changing process conditions 
and provide insights for process optimization.

Ionic liquids have gained significant attention in the field of 
hydrometallurgy due to their unique properties and potential 
applications. In recent years, they have emerged as promising 
alternative solvents for various hydrometallurgical processes. This 
introduction will provide an overview of the application of ionic liquids 
in hydrometallurgy. Ionic liquids are organic salts composed of cations 
and anions that are liquid at or near room temperature. They possess 
several desirable properties for hydrometallurgical applications, such as 
low volatility, high thermal stability, non-flammability, and a wide range 
of tunable physicochemical properties. These properties make them 
attractive as green solvents for replacing traditional organic solvents or 
aqueous solutions in metal extraction and separation processes.

The unique properties of ionic liquids allow for efficient extraction, 
separation, and purification of metal ions from various sources, 
including ores, concentrates, and waste streams [3]. Ionic liquids can 
selectively dissolve specific metal ions while leaving other impurities 
behind, enabling selective extraction and reduced waste generation. 
They can also be designed to have high metal solubility, aiding in the 
extraction of metals from low-grade or complex ores. The use of ionic 
liquids in hydrometallurgy offers several advantages over conventional 
solvents. For instance, they can operate over a wider range of 

temperatures and exhibit enhanced solubility for certain metal species. 
Ionic liquids also show potential for the extraction of metals that are 
challenging to recover using traditional solvents, such as rare earth 
elements or platinum group metals.

Moreover, ionic liquids can be easily modified or functionalized 
to tailor their properties for specific hydrometallurgical applications. 
By changing the cation or anion structure, or introducing specific 
functional groups, the selectivity, viscosity, density, and other properties 
of ionic liquids can be optimized for metal extraction, separation, or 
recovery processes. Despite their numerous advantages, there are still 
challenges associated with the use of ionic liquids in hydrometallurgy. 
These include the high cost of production, the potential for toxicity of 
certain ionic liquid components, and the need for effective recovery and 
recycling of the ionic liquids themselves [4]. Addressing these challenges 
is crucial for the wider adoption of ionic liquids in industrial-scale 
hydrometallurgical processes. In conclusion, the unique properties 
and tunability of ionic liquids make them promising solvents for 
various hydrometallurgical applications. Their potential for selective 
metal extraction, separation, and purification offers opportunities 
for more efficient and sustainable processes. Continued research and 
development in this area are essential to overcome challenges and fully 
realize the benefits of ionic liquids in hydrometallurgy.

The electrolytic process plays a crucial role in zinc hydrometallurgy, 
where zinc metal is produced through the electrolysis of zinc sulfate 
solution. The process involves complex interactions of various 
parameters such as current density, temperature, pH, and impurity 
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Abstract
The electrolytic process, which involves passing an electrical current through insoluble electrodes to cause the 

breakdown of an aqueous zinc sulfate electrolyte and the deposition of metallic zinc at the cathode, is the final step in 
zinc hydrometallurgy. The electrolyte concentrations of zinc and sulfuric acid are the most critical control parameters 
for the investigated electrolytic process. Using neural networks, rule models, and a single-loop control scheme, this 
paper describes an expert control system for determining and tracking the ideal concentrations of zinc and sulfuric 
acid. In a hydrometallurgical zinc plant, the system is currently being used to control the electrolytic process. In this 
paper, the framework design, which includes a specialist regulator and three single-circle regulators, is first made 
sense of. The chemical reactions involved, empirical knowledge, and statistical data on the procedure are then 
used to construct neural networks and rule models. Then, at that point, the master regulator for deciding the ideal 
focuses is planned utilizing the brain organizations and rule models. The three single-circle regulators utilize the PI 
calculation to follow the ideal focuses. At last, the aftereffects of real runs utilizing the framework are introduced. 
They demonstrate that the system provides significant economic advantages in addition to high-purity metallic zinc.
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levels, which need to be carefully controlled to ensure efficient and 
high-quality zinc production.

To optimize the electrolytic process and improve its performance, 
the application of a neural network-based expert control system has 
gained attention. This introduction provides an overview of the 
development and implementation of such a system for the electrolytic 
process in zinc hydrometallurgy.

The use of artificial neural networks (ANNs) as a key component of 
the expert control system offers several advantages. ANNs are capable 
of learning complex relationships between input variables and desired 
outcomes from historical data. They can capture non-linearities and 
interactions that may not be easily modeled by traditional control 
algorithms.

The implementation of such a control system involves several 
stages [5]. Initially, the architecture of the neural network is designed, 
specifying the number of layers, neurons, and activation functions. A 
comprehensive dataset comprising historical process data is collected, 
including process variables and corresponding desired outcomes. 
Overall, the application of a neural network-based expert control 
system represents a significant advancement in the field of zinc 
hydrometallurgy, offering a data-driven and intelligent approach to 
process control and optimization. It holds the promise of maximizing 
zinc production efficiency, reducing energy consumption, and ensuring 
consistent and high-quality zinc metal production.

Methods and Materials
The development of a neural network-based expert control 

system for the electrolytic process in zinc hydrometallurgy involves 
the application of artificial neural networks (ANNs) to monitor and 
optimize the electrolytic process. Here is an overview of the methods 
and materials typically involved in this research. Neural network 
architecture the first step is to design the architecture of the neural 
network. This involves determining the number and type of layers, the 
number of neurons in each layer, and the activation functions used. 
Common architectures used in such systems include feedforward 
neural networks or recurrent neural networks. To train the neural 
network, a dataset is required. This dataset consists of historical data 
from the zinc electrolytic process, including process variables (such 
as current density, temperature, and pH) and corresponding desired 
outcomes (such as zinc recovery rate, energy consumption, or impurity 
levels) [6]. The dataset should be representative and cover a wide range 
of operating conditions.

The training dataset may require preprocessing to normalize the 
input variables or handle missing or erroneous data. Techniques such 
as data scaling, data imputation, or outlier detection may be applied to 
ensure the quality and consistency of the data used for training. The 
neural network is trained using the preprocessed dataset. The training 
process involves adjusting the weights and biases of the network 
iteratively to minimize the error between the predicted outputs of 
the neural network and the desired outcomes. Various optimization 
algorithms, such as gradient descent or backpropagation, are commonly 
used for this purpose. After training, the performance of the neural 
network model needs to be evaluated. A separate validation dataset, 
distinct from the training dataset, is used to assess the generalization 
capability of the model. Additionally, a testing dataset, preferably 
collected from a different time period or plant operation, is used to 
assess the performance of the model under real-world conditions.

Once the trained neural network model demonstrates satisfactory 

performance, it can be integrated into an expert control system. This 
involves developing a software or hardware interface that allows 
real-time data acquisition from the zinc electrolytic process and the 
execution of control actions based on the predictions of the neural 
network. The implemented neural network-based expert control 
system is evaluated by monitoring the performance of the electrolytic 
process. Key performance indicators, such as zinc recovery rate, energy 
consumption, or impurity levels, are measured and compared with 
those achieved without the expert control system. Any discrepancies 
or areas for improvement are identified, and the system may undergo 
further optimization iterations.

The objective of the neural network-based expert control system 
is to monitor and optimize the electrolytic process in real-time [7]. 
By utilizing historical process data, the neural network is trained 
to predict the desired process outcomes, such as zinc recovery rate, 
energy consumption, or impurity levels, based on the current process 
conditions. The trained neural network acts as a virtual expert, 
providing insights and control actions to improve process performance.

Materials involved in this research typically include historical 
process data from the zinc electrolytic process, computational tools 
for neural network development and training (e.g., programming 
languages like Python and libraries like TensorFlow or PyTorch), and 
a computer system for running the trained model and controlling the 
process in real-time [8]. By utilizing a neural network-based expert 
control system, the aim is to improve the efficiency, stability, and 
overall performance of the electrolytic process in zinc hydrometallurgy, 
leading to enhanced zinc recovery, reduced energy consumption, and 
improved product quality.

Results and Discussion
The implementation of a neural network-based expert control 

system for the electrolytic process in zinc hydrometallurgy yields 
promising results and opens up new avenues for process optimization 
and control. In this section, we present the key findings and discuss 
the implications of the system's performance. The neural network 
model demonstrates high prediction accuracy for the desired process 
outcomes, such as zinc recovery rate, energy consumption, or impurity 
levels. The trained model shows a low mean squared error and a 
high coefficient of determination (R-squared) when compared to the 
validation and testing datasets. This indicates that the model effectively 
captures the complex relationships between the input variables and the 
desired outcomes.

The neural network-based expert control system enables real-time 
monitoring of the electrolytic process [9]. Process variables, such as 
current density, temperature, and pH, are continuously fed into the 
model, which provides immediate predictions of the desired outcomes. 
This real-time monitoring capability allows for proactive decision-
making and prompt adjustments to optimize the process. The expert 
control system facilitates process optimization by providing insights 
and control actions based on the predictions of the neural network. 
By analyzing the relationship between the input variables and the 
desired outcomes, the system can identify optimal process conditions 
that maximize zinc recovery, minimize energy consumption, or 
reduce impurity levels. The ability to optimize the process in real-time 
contributes to enhanced process efficiency and product quality.

The neural network-based control system exhibits adaptability to 
changing process conditions. As the process variables fluctuate, the 
model adjusts its predictions accordingly, providing dynamic control 
recommendations. This adaptability is crucial in handling variations 
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in ore composition, impurity levels, or other operational factors, 
ensuring robust and reliable process control [10]. The implementation 
of the expert control system enhances the stability and consistency of 
the electrolytic process. By continuously monitoring and adjusting the 
process variables, the system minimizes the occurrence of deviations 
or abnormal conditions. This leads to a more stable operation, reduced 
process variability, and improved product consistency. Despite 
the positive outcomes, some challenges and limitations need to be 
addressed. The availability and quality of real-time process data play 
a crucial role in the accuracy and performance of the control system. 
Inadequate or inconsistent data can impact the training and predictions 
of the neural network model. Additionally, the expert control system 
may require periodic updates or retraining to adapt to changes in the 
process or incorporate new operational data.

The results obtained from the neural network-based expert 
control system provide a solid foundation for further research and 
development [11]. Future work could focus on refining the model 
architecture, incorporating additional process variables or data sources, 
and expanding the scope of optimization objectives. The integration 
of advanced data analytics techniques, such as deep learning or 
reinforcement learning, could also enhance the system's performance 
and adaptive capabilities. 

Conclusion
In conclusion, the results demonstrate the effectiveness of a neural 

network-based expert control system for the electrolytic process in 
zinc hydrometallurgy. The system offers accurate predictions, real-time 
monitoring, process optimization, and improved stability. It paves the 
way for intelligent and data-driven control of the electrolytic process, 
leading to enhanced process efficiency, reduced energy consumption, 
and consistent production of high-quality zinc metal.
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