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Description

Obesity is defined as a disproportionate body weight for height with 
excessive accumulation of subcutaneous and visceral adipose tissue. 
Over the past decades, number of obesity patient multiplied. Obesity 
has turned into a medical issue worldwide. According to a survey from 
WHO in 2016, more than 1.9 billion adults were overweight or obese 
[1]. By 2030, there will be 3.3 billion people who have a BMI greater 
than 25 kg/m2 [2]. Obesity is associated with the development of type 
2 diabetes mellitus, cardiovascular infection, systemic inflammation 
and particular kinds of cancer [3]. Some of these obesity-associated 
diseases belong to metabolic syndrome [4]. In recent years, several 
factors leading to obesity have been disclosed. Among these, excessive 
intake of fructose may contribute heavily to the epidemic of obesity, 
type 2 diabetes mellitus, Non-Alcoholic Fatty Liver Disease (NAFLD) 
and other metabolic disease [5-7]. Herein, we review the biochemistry, 
physiology of fructose metabolism and generalize the current treatment 
progress.

As a simple ketohexose, fructose is derived mostly from fruits, 
honey, and vegetables. It is the sweetest natural sugar. Sucrose 
composed of 50% fructose and 50% glucose, and High-Fructose Corn 
Syrup (HFCS) are commonly used as sweeteners in many processed 
foods and carbonated beverages. Worryingly, in recent decades, the 
fructose consumption has increased dramatically. Upon oral ingestion, 
fructose is absorbed in the small intestine and transported into 
enterocytes and hepatocytes via Glucose transporter5 (Glut5). Upon 
entering the cells, fructose is initially metabolized to Fructose-1-
Phosphate (F1P) by Ketohexokinase (KHK) with Adenosine 
Triphosphate (ATP) depletion [8]. The consuming of ATP leads to the 
production of Reactive Oxygen Species (ROS) and Uric Acid (UA) 
which is a major etiologic factor in gout. F1P could be converted by 
aldolase B to GA and DHAP. GA is phosphorylated by Triose kinase 
(Triok) to GA3P which could be resynthesized into glucose via 
gluconeogenesis. Both GA3P and DHAP could be metabolized into 
lactate and pyruvate which are used for lipogenesis. Unlike the glucose 
metabolism pathway, there is no negative feedback regulation of 
fructokinase to prevent it from metabolizing fructose [9-11]. Compared 
to glucose, fructose significantly elevates de novo Lipid (DNL) 
synthesis [12]. According to our knowledge, there are several potential 
mechanisms for leading to obesity or other metabolic syndrome 
associated with fructose: (1) High doses of fructose can induce both 
hepatic and peripheral insulin resistance [13]; (2) Excessive consuming 
fructose lead to hyper energy intake; (3) Dietary fructose improves the 
survival of intestinal cells and increases intestinal villus length 
resulting to the promotion of the nutrient absorption [5] (Figure 1).

KHK is the significant fructose metabolic enzyme that initiates the 
phosphorylation of fructose on position C1 utilizing ATP as a cofactor 
[14-16]. KHK is expressed as two distinct isoforms (KHK-A and 
KHK-C) from a single gene [17]. Although the affinity of KHK-A for 
fructose is more potent than KHK-C, KHK-C is the primary isoform 
because of that KHK-C is expressed at high levels in key metabolic 
tissues including liver and small intestine while KHK-A is expressed 
on low levels. Additionally, KHK knockout mice were fully protected 
from fructose-induced increases in body weight, serum lipid and serum 
insulin [18]. In especial, liver-specific knockout or knockdown of 
KHK can protect against fructose-induced metabolic disease including 
obesity [19]. These results support that fructose is metabolized by 
KHK especially in the liver.

Based on the above evidence, KHK inhibitors or KHK expression 
downregulation appeared to be potential therapeutic strategy for 
fructose metabolic diseases. Pharmaceuticals have paid considerable 
attention to discover novel KHK inhibitors. In 2011, Johnson & 
Johnson Pharmaceutical reported a KHK inhibitor with high potency 
but in low exposure due to a high metabolic clearance [20]. 
PF-06835919, discovered by Pfizer in 2015, is currently in two Phase 
2a studies (NCT06089265, NCT05463575). Preclinical studies showed 
dose-dependent (p.o., 75 mg/kg and 300 mg/kg) downregulation of 
HOMA-IR, Hs-CRP, triglyceridemia, uric acid, and upregulation of 
adiponectin level under a high-fructose diet after PF-06835919 was 
administrated for six weeks [21]. The results indicated that KHK 
inhibition may be helpful for treatment of fructose-induced metabolic 
diseases. Compared to PF-06835919, Eli Lilly and Company reported a 
novel KHK inhibitor with high potency on enzyme and cell in 2020  
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Figure 1: Fructose metabolism. Note: KHK: ketohexokinase; ATP: 
Adenosine triphosphate; AMP: adenosine monophosphate; IMP: 
inosine monophosphate; GA: glyceraldehyde; DHAP: 
dihydroxyacetone phosphate; GA3P: glyceraldehyde 3-phosphate; 
PFK: phosphofructokinase; PKLR: pyruvate kinase, liver and red 
blood cell; PEP: phosphoenolpyruvate; DNL: de novo lipogenesis.
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[22]. Shandong Xuanzhu Pharma, TuoJie  Biotech  (Shanghai),  and 
LG Chem etc. also disclosed KHK inhibitors, respectively [23-25].

Except for KHK inhibitors, KHK expression downregulation via 
siRNA technology has been developed in recent years. Compared to 
wild type group, KHK knockout mice on 8 weeks assay revealed 
lower TG level, liver weight, insulin resistance with normal glucose 
level [26]. These results inspired the development of KHK siRNA 
technology. Alnylam Pharmaceuticals reported their siRNA candidates 
(AD-1613400 and AD-1613243) in 2022 [27]. Results showed that 
single dose administration (s.c., 3 mg/kg) to cynomolgus monkeys led 
to durable and potent inhibition of KHK mRNA expression and KHK 
protein. In the same year, Boehringer Ingelheim reported a siRNA 
product (KHK-1334) for reducing the expression of KHK. 
Administration of KHK-1334 (s.c., 6 mg/kg) to cynomolgus monkeys 
resulted in significant knockdown of KHK mRNA and KHK protein 
expression in the liver [28].

Conclusion
Over the past decades, number of obesity patient multiplied. Obesity 

has turned into a medical issue worldwide. Obesity is associated with 
the development of type 2 diabetes mellitus, cardiovascular infection, 
systemic inflammation and particular kinds of cancer. Excessive intake 
of fructose may contribute heavily to the epidemic of obesity, type 2 
diabetes mellitus, NAFLD and other metabolic disease. Some 
promising KHK inhibitors or KHK siRNA silencers have been 
developed with attractive results.
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