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Abstract

Natural oxygen and hydrogen stable isotopes (δ18O-H2O and δD-H2O) in modern precipitation collected in five
months event in 2001 in Northwestern Tunisia (El Kef area) are presented in this paper. The total correlation
between δ18O and δD is obtained as the Global Meteoric Water Line and the Local Meteoric Water Line of the
Tunis-Carthage. Seasonal variations of the precipitation D-excess provide more details for changes in moisture
sources. The lower δD and δ18O values observed at the El Kef site reflect the combined effects of oceanic and sea
vapor sources “Atlantic–Mediterranean origin”, fractionation due to local precipitation, and slower equilibration of the
larger raindrops nucleated by a maritime aerosol.

Keywords Stable isotopes; Precipitation; Vapor sources;
Northwestern Tunisia; El kef area

Introduction
The stable isotopes 18O(H2O) and 2H(H2O) have many applications

in hydrogeological investigations, meteorological, hydrologic,
ecological and paleoclimatic studies [1-5]. Due to their high
abundance and the simplicity of their analytical determination, spatial
and temporal variations in the 18O and 2H contents of precipitation
are caused by the isotope fractionation effect accompanying
evaporation from the ocean and condensation during the atmospheric
transport of water vapor [6,7]. Isotope fractionation is a thermo-
dependent reaction, as proved by the existence of a correlation
between δ18O in rainwater and environmental temperature [6,8].
Thus, more the temperature is higher; more the heavy isotope is
higher. The existence of thermo-dependence in the fractionation of
18O and 2H implies a correlation between the two parameters, which
has been defined by different authors:

Craig [9] and Rozanski [10]: Global Meteoric Water Line (GMWL:
δ2H=8 δ18O+10);

Zouari [11]: Local Meteoric Water Line of the Tunis-Carthage
(LMWL: δ2H=8 δ18O+12.4).

The Global Meteoric Water Line (GMWL) corresponds to the
averaging of numerous local meteoric straight lines (regional data),
each of which is influenced by the abovementioned geographic and
climatic factors. The intercept of the GMWL is termed the deuterium
excess (d=δ2H-8 δ18O after Clark [12]. The value of this parameter is
acquired during evaporation, and does not vary significantly during
the later history of the cloud mass. It is thus a valuable indicator of the
source area of the water vapor Rindsberger [13]; Cruz [14]; Celle-
Jeanton [15]: d values close to 10% indicate waters of Atlantic origin,
values close to 22% are characteristic of waters from the Eastern
Mediterranean and d values close to 14%, intermediate between the
first 2, are detected in rainwater falling on the Western Mediterranean.

In this study, we report the correlation between δ18O, δD and D-
excess value in precipitations and their relationship with temperature.
More importantly, their responses to changes in moisture sources will
be discussed. This may prove beneficial in understanding the response
of precipitation δ18O and δD to climatic/environmental variables in
Northwestern Tunisia (El Kef area) and in understanding the
palaeoclimatic records associated with precipitation δ18O and δD in
monsoon climate studies.

General Setting

Geography
The study area is located in the North Africa and in the NW part of

Tunisia, a site located at the southern margin of the Tethys. The El Kef
area is located between 40°30′ and 39°45′N, and 6°30′ and 7°30′E, near
the Atlantic–Mediterranean confluence (Figure 1). It extends 60 km in
the N-S direction and 60-80 km in the E-W direction, covering an area
of 420 km2. The elevation of the El Kef Plateau decreases from 400–
500 m above sea level (m a.s.l.) (Figure 1).

Climate
Meteorological data (precipitation and temperature) obtained at the

nearest meteorological station (El Kef meteorological station:
7G09’00”N, 40G20’70”E, asl 10 m) around the sampling site includes
only the period from 1924 to 2001. During this period, the maximum
of precipitation was observed in January (58.6 mm) and a minimum in
July (9.4 mm) (Figure 2); the maximum and minimum monthly mean
temperatures that were recorded was approximately 36°C in August
and 3°C in January, respectively (Figure 3). Relative humidity was
maximum in spring (≈65%) and minimum in summer (≈26%). Over
80% of the annual precipitation occurs during the rainy season from
December to May. The precipitation that occurs during dry season
from June to November accounts for about 20%. The potential evapo-
transpiration exceeds 1,300 mm [16].
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Figure 1: The localization map of El Kef region (NW Tunisia).

Figure 2: The averages of monthly precipitation from 1924 to 2001
in El Kef area.

Figure 3: The averages of monthly temperature from 1924 to 2001
in El Kef area.

Methods and Sampling
Owing to financial constraints, a limited number of modern

meteoric water samples were selected for oxygen-18 and deuterium
[16]. Hydrogen and oxygen isotope analyses were performed in the
Laboratory of the International Agency of Atomic Energy (IAEA) in
Vienna, by employing, respectively the standard CO2 equilibration
[17,18] and the zinc reduction techniques [19], followed by analysis on
a mass spectrometer. Oxygen and hydrogen isotopes analyses were
reported to δ notation relative to Vienna-Standard Mean Oceanic
Water (VSMOW), where δ=[(RS/RSMOW)-1] x 1,000; RS represents
either the 18O/16O or the 2H/1H ratio of the sample, and RSMOW is
18O/16O or the 2H/1H ratio of the SMOW. Typical precisions are ± 0.1
and ± 1.0% for oxygen-18 and deuterium, respectively. The isotopic
composition of oxygen (δ18O) was measured after equilibration with
reference CO2 at 25°C for 24 h [17], while reduction on Cr at 800°C
was used to determine the isotopic composition of hydrogen (δD) in
water [20]. Both measurements were performed on a Varian MAT 250
mass spectrometer.

Precipitation was captured using a dual bucket system in which a
smaller bucket with a small hole at the bottom was placed snugly
inside a larger bucket. During a rain event, the water drained through
the hole, where it would remain inside the larger bucket until sample
retrieval. After a snowfall, the sampler was brought inside where the
water was melted and drained into the lower bucket. The precipitation
samples were then transferred to 5 ml glass vials with poly-seal cone
closures. These samples were collected in 1-L Nalgene bottles and then
transferred after melting into 5 ml glass vials.

Results and Discussion

Regional isotopic composition of precipitation
The results for meteoric waters are given in Table 1. The isotopic

compositions of collected meteoric waters range from -8.45 to -4.12‰
(δ18O) and -55.40 to -22.60‰ (δ2H) for El Kef area in 2001 [16]. These
results are plotted in Figure 6 and in the Table 1. This variation is
controlled by local climatic parameters, including the origin of the
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vapor mass, re-evaporation during rainfall, the seasonality and
monthly of precipitation; and suggestive of different atmospheric
sources during these months as compared to the other rainy season
months of July through September [12,16,21-23]. Generally, the
negative precipitation isotopic values are attributed to the air
temperature gradient and the massifs that surrounding the study area
(Algerian and Tunisian Atlas: “1,000 ≤ altitude ≤ 1,500m”) (Figure 4).
One of the factors that can be identified as influential is the distance of
the stations from the Ocean and/or the sea.

Date Amount of
precipitati
on

Temperature
(°C)

Delta
18O

Delta
2H

D-
excess

January 2001 58 3 -8.45 -55.4 12.2

February 2001 53 5 -7.35 -41.5 17.3

March 2001 55 13 -6.88 -42.4 12.64

April 2001 51 13 -5.48 -36.6 7.24

May 2001 41 16 -4.12 -22.6 10.36

Table 1: Isotopic data for the precipitation in El Kef area (2001). (Delta
18O and 2H: per mille VSMOW “Vienna-Standard Mean Ocean
Water”)- Precipitation (mm)

These negative residuals of the observed δ18O values in
precipitation most likely result from strong convective precipitation
during the period of Atlantic Ocean monsoon and the Mediterranean
Sea activities. Furthermore, positive residuals are observed in the
desert area of North Africa by several scientific studies [24-27]. These
positive residuals can probably be attributed to the moisture forming
precipitation coming from inland vapor cycle. The dry continental air
masses usually result in 18O enrichment in precipitation [28,29].
Simultaneously, strong evaporation in these regions also causes
raindrops to become increasingly enriched in 18O of precipitation.
Additionally, it is noticeable that observed stations of these regions are
relatively sparse (Tunis-Carthage and Sfax stations belonging to the
GNIP network), which imparts influence on the precision of
interpolation results to some extent.

By concerning the amount of precipitation and temperature effects,
the values of δ18O and δD in precipitation (Figure 5) decrease with
increasing precipitation. At a monthly timescale, the precipitation
oxygen isotope composition co-varies with the amount of
precipitation “amount effect” (showing negative relationship) and
temperature (showing positive relationship) “temperature effect” at
the study area (Figure 6). Although a longer time series in
Northwestern Tunisia (El Kef basin) would be needed in order to
confirm exactly the link of amount of rainfall and temperature with
the oxygen isotope composition of precipitation, the available data
(only 6 months) and mainly the geological and the climatological
regional context support that these variables are direct controls of the
isotope signal of precipitation. Over this period, each precipitation
event higher than 2 mm (excluding potential precipitation altered by
partial evaporation of droplets during fall) was collected and analyzed
for deuterium and oxygen-18. The variability of oxygen isotopes in
precipitation explained by amount of precipitation (discarding months
with upper 40 mm of precipitation) (Table 1).

In other words, the evaporation during passage of raindrops
through a warm dry atmosphere typical of semi-arid areas causes a

greater enrichment in heavy isotopes in precipitation during small
rainfall events than in large rainfall events [6]. This ‘‘amount effect’’
has also been observed in the northern Sahara, where heavy winter
rainfalls are generally depleted in heavy isotopes [24,30]. It is also
possible that air masses coming from central Europe can contribute to
the depletion of isotopic composition (continental effect). The
distance between the moisture source and the site of precipitation has
been suggested to impact the oxygen isotope composition of
precipitation [31,32]. According to the Rayleigh distillation process
governing this relationship, the depletion of moisture vapour due to
precipitation along the air mass trajectory results in a progressive 18O
depletion of the remaining moisture fraction in the atmosphere and
the subsequent precipitation events [6,33-37] was the first to recognize
that the δD and δ18O composition of precipitation was negatively
correlated with temperature, latitude, altitude, distance from the coast,
and the amount of precipitation. The change in moisture sources is an
important contributor to the precipitation isotope variability [13].
Thus, the paleoclimate oxygen isotope records depending on the
isotope composition of precipitation are potentially impacted by
moisture sources (continental moisture originates from evaporation of
soils, surface waters and plants transpiration), the origin of the
precipitation “precipitation from Mediterranean in relation to Atlantic
sources, the atmospheric dynamic” [22,23,33,38-41].

Figure 4: The δ18O/ δ 2H diagram of precipitation in El Kef area.

Interpretation of oxygen-18 and deuterium data
The standard diagram of δ18O/ δ2H (Figure 4) shows the position of

all samples relative to the Global Meteoric Water Line (GMWL: δ2H=8
δ18O+10) [9,10] and the Local Meteoric Water Line of the Tunis-
Carthage (LMWL: δ2H=8 δ18O+12.4) [11] closest to our study area
belonging to the GNIP network. This diagram shows that all meteoric
water samples lay between the GMWL and the LMWL. This
arrangement signifies that the precipitation ensuring the recharge of
the El Kef area originates from a mixture of Oceanic and
Mediterranean vapor masses. This suggests that the precipitation as
the predominant source from the Atlantic (with the intercept +40%)
and from the Mediterranean (with the intercept up to +60%) during
this period of rain (January to May 2001). However, quantifying the

Citation: Hamed Y (2014) Stable Isotope Ratios in Meteoric Waters in El Kef Region, Northwestern Tunisia: Implications for Changes of Moisture
Sources. J Earth Sci Clim Change 5: 203. doi:10.4172/2157-7617.1000203

Page 3 of 6

J Earth Sci Clim Change
ISSN:2157-7617 JESCC, an open access journal

Volume 5 • Issue 6 • 1000203



contribution of each of these origins to the total recharge of the basin
is difficult, and no simple and reliable methods are currently available.
These findings and estimations remain to be developed in the future
but with a lot of isotopic data. However, this contribution varies from
one period to another and to a geographical area to another;
depending on several other parameters (climate, geographical
position, storm trajectory, atmospheric moisture, temperature,
latitude, altitude, distance from the coast, and the amount of
precipitation, also the influence of the isotopic signature of local
precipitation “local vapor sources”). The same phenomenon was also
observed in the central and southern Tunisia [21,22,42-45]. A mixed
isotopic signature of Atlantic and Mediterranean origin was also
observed in the karst aquifers of southeastern and south Spain [46,47]
and northeastern of Algeria-El Eulma basin [48].

Figure 5: Plot δ18O vs Precipitation vs Months in El Kef area.

Figure 6: Plot δ18O vs Temperature vs Months of precipitation in El
Kef area.

The air passing over El Kef area reflect the combined effects of
oceanic-sea vapor sources, fractionation due to local precipitation, and
slower equilibration of the larger raindrops nucleated by a maritime
aerosol (Mediterranean Sea from the North and from the East). Both
larger raindrops as well as the potential for more night-time
precipitation [49] may explain the variation isotopic signature of

precipitation at El Kef area [23]. Remember, that the observations at
this site are based on only half of one year of precipitation data, and
additional monitoring may be necessary to confirm the results
presented here.

Additionally, the samples that are characterized by a relatively
depleted oxygen-18 and deuterium contents, indicate that they are not
significantly affected by evaporated. Therefore, the most 18O-enriched
value corresponds to rain collected during summer (evaporative
influence). This value corresponds to summer precipitation with
intense evaporation of the raindrops beneath the cloud base with
surface air temperatures around 40°C. The deuterium values are
linearly and positively correlated to the δ18O values (Figure 4). The
linear correlation was found by many scientists [17,50]. The physical
basis for this correlation lies in the fractionation of isotopes during
evaporation-condensation processes [51]. This is attributed to the air
temperature gradient and the massifs of the country (Tunisian Atlas).
One of the factors that can be identified as influential is the distance of
the stations from the sea (≈100 km).

Tunisia is located in the Western Mediterranean, which represents a
climatic transition zone open to the influence of the cool North
Atlantic air masses and the warm Mediterranean air masses [13,43].
Moreover, specific geomorphologic characteristics of Tunisia i.e. the
absence of high mountains with elevations exceed 1,500 m and the
relatively limited geographic extensions allow the integration of
Saharan air masses into the atmospheric circulation [34]. However,
hydro-meteorological studies [35,52] suggest the existence of two
major trajectories for dominant air masses. These are (i) Atlantic air
masses that circulate from the west over Northern Africa and (ii)
Mediterranean air masses that come from the north (Figure 1).
Quantitatively, Mediterranean precipitation represents ≈66% of the
total rainfall. The main part of the regional aquifer recharge is supplied
by Mediterranean rain events. The question about how this affects the
local precipitation and precipitation δ18O needs future detailed work,
for this influence may vary in time and in space.

Deuterium-excess (D-excess) (Table 1), defined as (D-excess=δ2H-8
δ18O), is generally associated with the moisture sources of the
precipitation and Sea Surface Temperature (SST; positive correlation)
at the moisture source [6,53,54]. It is generally negatively correlated
with the relative humidity of the air masses formed above the ocean
[53-55], and appears to be used to indicate climatic changes in the
moisture source regions [56,57]. Using this relationship, D-excess has
been used in many studies to determine the temporal changes in
moisture supply for a given location [58]. The average D-excess in El
Kef basin during 2001 (from January to May) is 11.94‰. The d values,
varying from 7.24‰ (April) to 17.3‰ (February). The high D-excess
for the winter samples indicating evaporation in low humidity
conditions and low D-excess in summer (coupled with the higher
δ18O) indicating the possible re-evaporation below the cloud.

These results indicate a larger proportion of local moisture for the
precipitation in 2001 in northwestern Tunisia. To improve the quality
of this moderate interpretation, probably we should adopt a model
analysis on trajectory of air-mass with combination with several
isotopic analyses. Moreover, like several scientific authors in the word,
I hope that application of these isotopic and modeling methods (GIS)
would become of common use in order to advance in our knowledge
of the oxygen, deuterium isotopes and D-excess composition at
different areas in the word and to improve and facilitate the
interpretations of paleoclimate depending on it and with the inter-
discipline inter-collaboration.
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Conclusions
Isotopic composition of precipitation in semi-arid northwestern

Tunisia (El Kef area) is highly variable and barely seasonally
controlled. This variability is at least in part explained by different
pathways of the rain-bringing air masses. We were able to show that
air masses coming from southern and western directions in general
have significantly lower “d” values than rains from northern and
eastern directions due to rainout effects of air-masses. Evaporation
effects dominate the isotopic composition of many rainfall events with
less than 2 mm, as indicated by their low “d” values.

The relationship between δ2H and δ18O for local precipitation in El
Kef region shows that precipitation originating from cold and wet to
hot and dry and the differing contribution of vapor derived from the
closed marine basin of the Mediterranean Sea and the Atlantic Ocean
vapor source that contains a maritime aerosol. However, in Tunisia
geographical diversity influences the complicated mixing of
continental and maritime air masses and the sources of air masses
even change during a rain event. A mixed isotopic signature of
Atlantic and Mediterranean origin was also observed in the aquifers of
south Tunisia, Algeria, Morocco and Spain [21,22,47,59-61]. In reality,
this seasonal variability of δ18O and δD values apparent in
precipitation in the El Kef area is likely to be reflected in the isotopic
composition of the surface waters and the ground waters [23].
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