Herbal Therapies for Prevention and Treatment of Influenza and Influenza-Like Illness

Haider Abdul-Lateef Mousa
College of Medicine, University of Basrah, Iraq

Corresponding Author: Haider Abdul-Lateef Mousa, PO Box 601, Post Code 42001, Ashar, Basrah, Iraq, Tel: 009647808595467; E-mail: haideramousa@hotmail.com

Received date: January 29, 2015, Accepted date: May 26, 2015, Published date: June 3, 2015

Copyright: 2015© Haider Abdul-Lateef Mousa. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The frequent alterations in the antigenic structures of respiratory viruses make obstacles in the development of a novel vaccine or lead to ineffectiveness of an established one especially for RNA viruses. The unavailability of optimal medication and shortage of effective vaccines suggests the requirement for alternative therapies. Traditional herbal remedies were utilized by societies for prevention and treatment of viral respiratory illnesses. Several herbal extracts were proved effective on scientific bases such as maoto, licorice roots, antiwei, North American ginseng, berries, Echinacea, pomegranate, guava tea, and Bai Shao. The active ingredients of the plants (neuraminidase inhibitors, glycyrrhizin, polyphenol, baicalin) and the mechanism of action are well established. The herbal extracts could fight influenza by neuraminidase inhibition, preventing virus budding, assistance of viral binding to natural antibodies [3].

Introduction

Respiratory viruses are a major cause of influenza-like illness (ILI) symptoms in children and adults, leading to substantial morbidity and mortality each year [1]. The frequent changes in the viral antigenic structure make difficulties in the development of vaccine especially for RNA viruses. Successfully manufactured vaccine could be less effective or ineffective when antigenic changes has developed in the target virus. Furthermore, during emergence of a newly virulent viral strain, production of a new vaccine requires time and might be unsuccessful. During the period between new virulent viral strain appearance and vaccine production, a lot of people might lose their lives as a result of influenza epidemic. Since there is no fully effective medication or vaccine for respiratory viral infections, therefore looking for alternative therapies is a reasonable requirement.

Herbal Therapies

Many herbal therapies were employed for prevention and treatment of viral respiratory illnesses. The herbal medicine, maoto, has been traditionally prescribed to patients with influenza in Japan. The administration of oral maoto granules to adults with seasonal influenza was well tolerated and associated with equivalent clinical and virological efficacy to neuraminidase inhibitors [2]. Maoto exerts antipyretic activity in influenza virus-infected mice and reduces virus through augmentation of the virus-bound natural antibodies [3].

Keywords: Respiratory virus; Influenza treatment; Influenza prevention; Alternative therapy; Herbal medicine

Gamma production by T cells [4]. Korean red ginseng (KRG) has become a popular influenza-like illness (ILI) medication in Korea. Predy et al. showed that the ginseng extracts decreased duration, severity, and frequency of symptoms of upper respiratory tract infections [5]. Ki-Chan et al. also demonstrated that the KRG extract can efficiently reduce the ILI incidence [6]. Antwei, a traditional Chinese prescription in the treatment of influenza, was found effective and well tolerated in treatment of natural influenza infection in adults [7]. Another herbal product called COLD-IX (CVT-E002), a proprietary extract of the roots of North American ginseng (Panax quinquefolius). COLD-IX intake by immunocompetent elderly patients during an early cold and flu season reduced the relative risk and duration of respiratory symptoms by 48% and 53% respectively [8]. Elderberry intake also reduced the symptoms of influenza virus infections [9]. Extracts of berries inhibit influenza virus infection in vitro [10], and polyphenol is one of the key factors in the antiviral effects of berries [11]. Echinacea preparations are extensively used for the prevention and the management of the common cold. The preliminary results were encouraging, and suggest that Polinacea (roots of Echinacea angustifolia) could be used for improving the immune response to influenza vaccine [12]. In vitro test of the antiviral activities of Thyja orientalis, Aster spathaliiolus, and Pinus thunbergii were examined. The three plant extracts were shown to induce a high cell viability rate after the infection with the influenza A/PR/8/34 virus. Thyja orientalis was found to have a stronger inhibitory effect than that with Aster spathaliiolus or Pinus thunbergii. These results suggested that T. orientalis might be used for influenza treatment [13].

An aqueous-ethanolic extract of a mixture of Thujae occidentalis herba, Baptisiae tinctoriae radix, Echinacea purpureae radix and Echinaceae pallidae radix were given orally for mice with Influenza A virus infection. The extract therapy induced a statistically significant increase in the survival rate, prolonged the mean survival time and duration of respiratory symptoms by 48% and 55% respectively [14]. Elderberry intake also reduced the symptoms of influenza virus infection. The extract therapy induced a statistically significant increase in the survival rate, prolonged the mean survival time and reduced lung consolidation and virus titer. The study confirmed that...
the plants mixture extract administration 6 days before exposure was a potent inhibitor of Influenza A virus in vivo [14]. Clinacanthus siamensis leaf extract showed activity in vitro and in vivo tests on influenza virus. After oral administration to mice, the extract produced a higher anti-influenza virus IgG and IgA antibodies compared to oseltamivir [15]. Punica granatum (Pomegranate) had shown anti-influenza properties. Pomegranate polyphenol extract (PPE) was tested. It revealed replication suppression of influenza A virus in cell culture. PPE also prevented agglutination of chicken red blood cells by influenza virus, inhibited viral RNA replication, and was virucidal. In addition, the combination of PPE and oseltamivir synergistically had increased the anti-influenza effect of oseltamivir [16]. Electron microscopic analysis indicated that viral inactivation by pomegranates polyphenols was primarily a consequence of virion structural damage [17]. Psidium guajava Linn. (guava tea) had markedly inhibited the growth of clinical influenza A (H3N2) isolates. Guava tea inhibited viral hemagglutination and sialidase activity [18]. A plant known as Epimedium koreanum Nakai was extensively used in traditional Korean and Chinese medicine to treat a variety of diseases. It was effective against different influenza A subtypes by significant reduction in viral replication. The mechanism of antiviral activity was revealed where an aqueous extract from the plant induced the secretion of type I IFN and pro-inflammatory cytokines and the subsequent stimulation of the antiviral activity in cells [19]. A Chinese herbal known as Scutellaria baicalensis Georgi (baicalin), was used for the treatment of the common cold, fever, and influenza virus infections. In cell culture and in mice baicalin revealed obvious antiviral activity that increased in a dose-dependent manner, indicating that baicalin affected virus budding. The investigators concluded that baicalin acts as a neuraminidase inhibitor, with distinct inhibitory activities that were effective against different strains of influenza A virus [20]. The root of Paeonia lactiflora Pall. (Bai Shao) a common chinese herb was employed in many recipes to treat viral respiratory tract infections. Altern Med Review 17: 36-41.

Conclusion
Several herbal therapies were proved to be effective for prevention or treatment of influenza and influenza like illnesses. The active antiviral substances were obtained by aqueous or ethanolic extracts of single or mixture of herbs. The effective plants were used traditionally in certain nations to treat respiratory viral infections. Maoto, licorice roots, Korean red ginseng, North American ginseng, antivei, berries, Echinacea, pomegranate, guava tea, Scutellaria baicalensis Georgi, Bai Shao, and many other herbal extracts were found effective therapeutic agents. The mechanism of action is related to presence of substances in the herbs that prevent viral replication in human body. The identified active ingredients against respiratory viruses are neuraminidase inhibitors, glycyrrhizin (stimulating IFN-gamma production by T cells), polyphenol (causes virion structural damage) and baicalin (neuraminidase inhibitor).

References