A Meta-analysis of the Association of COX-1 Gene rs3842788 and rs1330344 Polymorphism with Aspirin Resistance in Chinese

Zhu Wang1,4, Yi Yu Chen2,4, Sihan Hu2,4, Rui Liu2,4 and Wanxi Yang3,5

1China Agricultural University, Qinghua East Road, Haidian District, Beijing, China
2Shanghai Lixin University of Accounting and Finance, QingJiangPu District, HuaiAn City, JiangSu, China
3Baylor University, Texas, USA
4The Beijing Genomics Institute, Airport High-tech Park, Shunyi District, Beijing, China
5Mount Holyoke College, South Hadley, MA, USA

These authors contributed equally to this work

* Corresponding author: Wanxi Yang, Mount Holyoke College, MHC4726, 50 College Street, South Hadley, MA, USA, Tel: 8618500610411; E-mail: yang32w@mtholyoke.edu

Received date: Sep 26, 2017; Accepted date: Oct 11, 2017; Published date: Oct 17, 2017

Copyright © 2017 Yang W, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The cyclooxygenase-1 (COX-1) gene rs3842788 variant (128G>A) and rs1330344 variant (1676G>A) have been associated with aspirin resistance in patients with cardiovascular disease. However, there is not enough evidence to demonstrate whether the A or G allele of COX-1 gene is indeed a genetic factor that can lead to aspirin resistance, with many of the studies coming to opposite conclusion. Here, we identified 10 articles on COX-1 gene and conducted a meta-analysis on the rs3842788 and rs1330344 genotype difference between aspirin resistance and aspirin sensitive patients. We found that there is no significant difference between cases and controls on GA+AA and GG genotypes of rs3842788 (OR, 1.22; 95% CI, 0.85-1.75; P, 0.29). The results provide additional evidence that rs3842788 of COX-1 gene maybe not a factor to cause aspirin resistance. However, we found that there is a significant difference between cases and controls on GA+GG and AA genotypes of rs1330344 (OR, 1.48; 95% CI, 1.15-1.90; P, 0.002). The results provide evidence that rs1330344 of COX-1 gene may be a factor to cause aspirin resistance. Therefore, more researches are needed to show the relationship between COX-1 gene and aspirin resistance.

Keywords: Aspirin resistance; COX-1; Allele; Genotype; Meta-analysis

Introduction

Acetylsalicylic acid (aspirin) is commonly used as an antiplatelet treatment for cardiovascular disease [1]. By inhibiting cyclooxygenase (COX) activity, a rostaglandins the formation of hs be and heln spirin impairs the formation of prostaglandin, and thromboxane A [2], which is critical to platelet aggregation. Long-term aspirin use therefore impairs the formation of prostaglandin, and thromboxane A [2], which is critical to platelet aggregation. Therefore, more researches are needed to show the relationship between COX-1 gene and aspirin resistance.

This phenomenon indicates that aspirin may have unequal antiplatelet effects on individuals. While the causative factors of aspirin resistance have not been determined, speculations of possible influences are plentiful. Generally, there is agreement that the mechanisms for aspirin resistance are multifactorial, but genetic polymorphism is potentially one of the direct causes [4].

Abundant literature suggested that there exist genetic basis for aspirin resistance and evaluated whether polymorphisms on the candidate genes can be identified for antiplatelet resistance [5]. Specifically, single nucleotide polymorphisms (SNPs) on COX may be the most reported genetic determinants. Because of the heterogeneity of the population studied, the diverse methods used, and the inadequate sample size, current studies often provide inconsistent and irreproducible results [6-16].

Therefore, there remains a need to systematically analyze whether the COX-1 genetic polymorphisms can be identified as biomarkers for aspirin resistance. In order to investigate the impact of COX-1 polymorphisms on aspirin resistance, we present here a meta-analysis of individual participant data, evaluating the association of two COX-1 polymorphisms (rs3842788: G128A, 128G>A rs1330344: A1676G, 1676AG) with the risk of having aspirin resistance. The result encompasses only patients with cardiovascular disease. The selection of COX-1 enzyme is based on its critical role in platelet regulation, and the SNPs are selected for their relevance to studies concerning aspirin resistance. The polymorphism has more than 1000 subjects for sufficient data synthesis.

Materials and method

Data sources

PubMed, Web of Science, Wanfang (http://www.wanfangdata.com.cn), and CNKI (http://www.cnki.net) electronic databases were searched up until 1 August 2017 for all articles evaluating the association between the genetic polymorphism of rs3842788 on COX-1 with aspirin resistance. Search terms used for the primary search were “aspirin resistance” and “AR” in combination
with "rs3842788", "G128A", and "128G>A" or "rs1330344", "A1676G" and "1676AG". Searches were limited to published English and Chinese language articles.

A secondary search was performed on all potentially relevant articles for any additional articles. Eligibility of the retrieved articles was evaluated by reading the titles and the abstracts if necessary. The search results were limited to human. Studies were required to have measured aspirin resistance using laboratory methods described previously.

Inclusion/exclusion criteria

Articles were included if (i) They evaluated the association of the genetic polymorphisms rs3842788 or rs1330344 with the risk of having aspirin resistance (ii) They were conducted on a case-control or nested case-control study design (iii) They provided the genotype and/or allele counts of examined polymorphisms between patients with aspirin resistance and controls in order to estimate odds ratio (OR) and 95% confidence interval (95% CI) (iv) The study contained a clear description of the method used to establish the effects of aspirin on platelet reactivity to compare patients with laboratory aspirin resistance with those without.

Articles were excluded if (i) They did not provide the genotype or allele counts of examined polymorphisms; (ii) They lacked either patient group or control group (iii) They were performed on nonhuman subjects (iv) They were meeting abstracts, case reports/series, editorials, review articles, or non-English and non-Chinese publications.

Data extraction

Data were extracted independently by different authors on a standardized Excel template and were verified with disagreements settled by consensus. For each article, information was extracted on the first author, publication year, age, aspirin dosages used, sample size of type of aspirin reactivity (aspirin resistance and aspirin sensitive), the genotypes/alleles of examined polymorphisms, study design, ethnicity as well as population characteristics.

Statistical analysis

Data were analyzed using Cochrane Review Manager, version 5.3 (Cochrane Collaboration, Syracuse, NY, USA). Risk estimate was expressed as a pooled odds ratio (OR) calculated using fixed and random effects model, along with the 95% CI to measure the strength of association. Fixed-effects summary ORs were calculated using the Mantel–Haenszel method. Test for heterogeneity were performed. For assessment of publication bias graphically, we used funnel plot on ORs.

Results

Qualified articles

The initial search identified 204 papers. When we refined the search by viewing the title, the number of papers was reduced to 97. We excluded 16 papers that are replicated. We reviewed 81 abstracts for evidence related to aspirin resistance and its relation to rs3842788 or rs1330344. We further excluded papers that contain only nonhuman subjects, have no data, or associate only with other gene locus. Overall, 10 papers met the inclusion criteria.

Study characteristics

We included 10 full-text articles. Aspirin dosages used in included studies are between 75 and 100 mg daily. Different studies apply various criteria to distinguish whether the patients were aspirin resistant or sensitive. Various sequencing methods were used to examine the sample characteristics. Sequenom Mass ARRAY iPLEX was used in three studies. (Peng Zhang LiXL). Three studies utilized Sequencing, PCR-RELP was used in three studies. And genechip were adopted in the other one study. All of the subjects in the meta-analysis are Chinese patients with cardiovascular disease. Five studies included Cerebral Ischemic Stroke patients. (Peng Zhang Cao). One study paid attention to Chronic Stable Angina patients. The other four studies involved patients with respectively Coronary Atherosclerotic Heart Disease and Ischemic Cerebrovascular. The aspirin resistance frequency of patients with genetic polymorphism rs3842788 (AA+AG) was 14.88% in patients, and 17.76% in controls, and rs1330344 (GG+AG) was 69.78% in patients, and 60.80% in controls. The 6 studies on the association between aspirin resistance and rs382788 analyzed statistically included 1610 subjects sensitive, and 330 subjects resistant, to aspirin. An OR of 1.22 was observed for aspirin resistance in subjects carrying the rs3842788 SNP (AG+AA). Interstudy OR heterogeneity was measured (χ²=14.90, df=5(P=0.01) I²=66%). Moreover, The 5 studies on the association between aspirin resistance and rs1330344 analyzed statistically included 1541 subjects' sensitive, and 417 subjects resistant, to aspirin. An OR of 1.48 (95% CI 0.83, 1.90; P=0.002) was observed for aspirin resistance in subjects carrying the rs1330344 SNP (AG+GG). Interstudy OR heterogeneity was measured (χ²=3.86, df=4 (P=0.43) I²=0%).

Meta-analysis

Figure 2 presents the OR and P values for the pooled analyses. The overall OR of the GA+AA genotypes compare to the GG genotype was...
1.22 (95% CI 0.85-1.75, P=0.29). It indicates that there is no significant difference between AR and AS groups on COX-1 gene rs3842788. There was no publication bias (not shown). Figure 3 presents the OR and P values for the pooled analyses. The overall OR of the AG+GG genotypes compare to the AA genotype was 1.48 (95% CI 0.83, 1.90; P=0.002). It indicates that there is significant difference between AR and AS groups on COX-1 gene rs1330344. There was no publication bias (not shown).

Table 1: The general situation of the study.

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>Ethnicity</th>
<th>Average age ± (sd)</th>
<th>Drug dose</th>
<th>Sample size</th>
<th>Gene detection method</th>
<th>Sample characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ping LL (2014)</td>
<td>Chinese</td>
<td>64.35 ± 11.88</td>
<td>100 mg/d</td>
<td>192</td>
<td>Sequenom Mass ARRAY iPLEX</td>
<td>Cerebral Ischemic Stroke Patient</td>
</tr>
<tr>
<td>XU JJ (2017)</td>
<td>Chinese</td>
<td>58.59 ± 11.35</td>
<td>100 mg/d</td>
<td>366</td>
<td>PCR-RFLP</td>
<td>Coronary Atherosclerotic Heart Disease Patients</td>
</tr>
<tr>
<td>XUE M (2016)</td>
<td>Chinese</td>
<td>61.80 ± 8.46</td>
<td>100 mg/d</td>
<td>207</td>
<td>Sequencing</td>
<td>Chronic Stable Angina Patients</td>
</tr>
<tr>
<td>Wang B (2009)</td>
<td>Chinese</td>
<td>57.16 ± 9.59</td>
<td>100 mg/d</td>
<td>220</td>
<td>genechip</td>
<td>Ischemic Cerebrovascular Patients</td>
</tr>
<tr>
<td>ZHANG SS (2015)</td>
<td>Chinese</td>
<td>64.35 ± 11.88</td>
<td>100 mg/d</td>
<td>96</td>
<td>Sequenom Mass ARRAY iPLEX</td>
<td>Cerebral Ischemic Stroke Patient</td>
</tr>
<tr>
<td>CAO LP (2014)</td>
<td>Chinese</td>
<td>64.21 ± 12.71</td>
<td>100 mg/d</td>
<td>859</td>
<td>Sequencing</td>
<td>Cerebral Ischemic Stroke Patient</td>
</tr>
</tbody>
</table>

Discussion

Aspirin blocks the aggregation of platelet by inhibiting the acetylation of the 529 serine of cox-115. Therefore, we evaluate the association of two common polymorphisms (rs3742788 and rs1330344) from COX-1 with aspirin resistance via the meta-analysis.

Table 2: Distribution of rs3842788 genotype in COX-1 gene in patients and controls.

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>AR</th>
<th>AS</th>
<th>P-value</th>
<th>Allelic frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ping LL (2014)</td>
<td>2</td>
<td>16</td>
<td>0.045</td>
<td>0.950/0.050</td>
</tr>
<tr>
<td>XU JJ (2017)</td>
<td>140</td>
<td>26</td>
<td>0.687</td>
<td>0.915/0.085</td>
</tr>
<tr>
<td>XUE M (2016)</td>
<td>42</td>
<td>9</td>
<td>0.016</td>
<td>0.954/0.046</td>
</tr>
<tr>
<td>Wang B (2009)</td>
<td>172</td>
<td>29</td>
<td>0.22</td>
<td>0.914/0.086</td>
</tr>
<tr>
<td>ZHANG SS (2015)</td>
<td>1</td>
<td>8</td>
<td>0.045</td>
<td>0.950/0.050</td>
</tr>
<tr>
<td>CAO LP (2014)</td>
<td>56</td>
<td>11</td>
<td>0.457</td>
<td>0.934/0.066</td>
</tr>
</tbody>
</table>
RS1330344

In this systematic review and meta-analysis of five studies and 1958 subjects, there has a significant association between rs1330344 and aspirin resistance. The possible reason is that rs1330344 locate in the promoter region of the COX-1 gene, and the GG type promotes the aggregation of platelets by increasing the expression of COX-1 proteins and produces phenomenon of aspirin resistance [6]. The study shows that the average frequency of G alleles is 40%, and that the distribution frequencies of rs1330344 in Japanese and Chinese are the same, so the rs1330344 may be a marker SNP for aspirin resistance in Asians 14.

Table 3: Distribution of rs1330344 genotype in COX-1 gene in patients and controls.

<table>
<thead>
<tr>
<th>Author (year)</th>
<th>AR</th>
<th>AS</th>
<th>Allelic frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huang JJ (2013)</td>
<td>13/63</td>
<td>53/40</td>
<td>0.411/0.589</td>
</tr>
<tr>
<td>Fan L (2012)</td>
<td>65/135</td>
<td>141/213</td>
<td>0.405/0.595</td>
</tr>
<tr>
<td>Li XL (2012)</td>
<td>17/230</td>
<td>25/313</td>
<td>0.385/0.615</td>
</tr>
<tr>
<td>Cao LP (2014)</td>
<td>12/17/28</td>
<td>4/6/8</td>
<td>0.407/0.593</td>
</tr>
</tbody>
</table>

Strengths and limitations of the study

Aspirin is a common drug in the treatment of cardiovascular and cerebrovascular diseases, but a phenomenon called “aspirin resistance” inhibits the therapeutic effect of aspirin. Previously, the association of aspirin resistance and genetic polymorphism was analyzed by a collection of clinical trials, but the results of these studies were sometimes inconsistent, and the sample size too small [12]. Therefore, we conducted a meta-analysis to combine results from different studies and did a comprehensive summary analysis. Despite the significance of our study, the meta-analysis has several potential limitations. First of all, although we have searched for all the published literature, the sample size is still relatively limited so that subgroup analyses cannot be taken into consideration. Second, since we only retrieved Chinese and English literatures, sample selection bias could not be excluded. At all, although we have searched for all the published literature, the sample size is still relatively limited so that subgroup analyses cannot be taken into consideration. Second, since we only retrieved Chinese and English literatures, sample selection bias could not be excluded. The seventh ACCP conference on antithrombotic and thrombolytic therapy. Chest 126: 2345-2645.

Acknowledgement

All authors (Zhu Wang, Yiyu Chen, Sihan Hu, Rui Liu, Wanxi Yang) contributed equally to the work and approved the final version of the manuscript submitted for publication.

References