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Introduction
Chemokines (chemotactic cytokines) are small proteins that mediate 

chemotaxis and activation of immune system cells, with importance 
both in immune development and inflammation. In addition, some 
chemokine receptors have been shown to be “co-receptors” for HIV-1 
(human immunodeficiency virus type 1) entry, making the chemokine 
system relevant for both its role in human health and in disease. The 
protein vMIP-II (viral macrophage inflammatory protein II) is a 
chemokine analog produced by human herpesvirus 8 (HHV-8) that 
has high sequence identity to many chemokines as well as nearly 
identical tertiary structure [1-3]. However, this protein is unique 
among chemokines in its ability to bind but not activate receptors 
of chemokines from multiple sub-families, including the receptors 
CCR5, CXCR4, CCR1, and CCR2 [4,5]. These properties allow vMIP-
II to effectively compete with the natural chemokine ligands of these 
receptors, including MCP-1 (monocyte chemoattractant protein-1; 
CCL2), MIP-1α (macrophage inflammatory protein-1 alpha; CCL3) 
and RANTES (regulated on activation normal T cell expressed and 
secreted; CCL5), and have elicited interest in vMIP-II both as an anti-
inflammatory agent and for its ability to inhibit HIV [6]. This 71 amino 
acid protein is also an agonist (having the ability to bind and to cause an 
intracellular response) for the receptor CCR3 [4,7,8].

Regarding its role in inflammation, vMIP-II has shown significant 
promise as an anti-inflammatory agent in animal models, including 
prolonging cardiac and corneal allograft survival [9,10]. vMIP-II also 
effectively reduced damage and neurological deficit in a spinal cord 
injury model [11-13] and could be safely injected into the mouse brain 
in order to attenuate inflammation and thereby reduce injury from 
cerebral ischemia [14].

The process of HIV infection begins with the interaction of HIV 
surface protein gp120 with human cell surface protein CD4 (Figure 
1A). This interaction allows conformational change in gp120, leading 
to the binding by gp120 of the co-receptor on the cell surface, CCR5 
or CXCR4. These co-receptors are chemokine receptors that normally 
play a role in immune activation and cell chemotaxis. The role of 
vMIP-II as an anti-HIV agent is based upon its unique ability to act 
as an antagonist of both chemokine receptors CCR5 and CXCR4 [4,6] 

(Figure 1B). Human chemokines, by contrast, are able to bind only 
receptors from one sub-class, so that MIP-1α, MIP-1β (macrophage 
inflammatory protein-1 beta; CCL4), and RANTES tightly bind the 
CCR5 receptor (and are able to inhibit infection with HIV strains that 
use this receptor), but have no effect on the CXCR4 receptor [15-17]. 
This receptor is bound by the natural ligand SDF-1 (CXCL-12), which 
in turn has no ability to bind CCR5 [18,19].

Chemokine variants have been developed that are among the most 
potent HIV entry inhibitors known, with much of the work having been 
done on the chemokine RANTES. In particular, chemical synthesis 
at the N-terminus of the protein has allowed the potent RANTES 
variants AOP-RANTES and PSC-RANTES to be developed, revealing 
nanomolar activity in vitro [20,21] and, for PSC-RANTES, effectiveness 
in protection from HIV in the macaque in vivo [22-24]. N-terminal 
modification of the chemokine has been shown to be transferrable, 
as AOP-MIP-1α was produced and also shown to be a potent HIV 
inhibitor [25].

The chemokine variant that currently has the highest potential for 
clinical use is undoubtedly 5P12-RANTES. This protein was obtained 
by random mutagenesis at the N-terminus of RANTES, replacing the 
wild type 9 amino acids with an N-terminus containing 10 amino acids. 
There are no further synthetic additions, so this protein can be made by 
recombinant techniques [26]. In addition to being highly potent (with 
antiviral activity in the sub-nanomolar range for most strains tested), 
this protein neither activates nor internalizes the CCR5 receptor, 
alleviating concerns about immune activation, which is not desirable 
in the context of HIV inhibition [26]. Later work also demonstrated 
that viral escape from 5P12-RANTES is extremely difficult, unlike 
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Abstract
vMIP-II (viral macrophage inflammatory protein-II) is a chemokine analog expressed by human herpesvirus-8 

that has the unique ability to bind multiple human chemokine receptors, including CCR5 and CXCR4, representative 
receptors of two major chemokine subfamilies. This broad binding ability gives vMIP-II powerful anti-inflammatory 
properties, which have been demonstrated in vitro and in vivo. In addition, vMIP-II is of great interest due to its ability 
to inhibit HIV infection by both major HIV strains: R5 (strains that enter the host cell using CCR5 as a co-receptor), and 
X4 (strains that use CXCR4). We have made a vMIP-II variant, “5P12-vMIP-II” in which the N-terminal amino acids of 
vMIP-II have been replaced by 10 amino acids that have been shown to greatly enhance the anti-HIV potency of the 
chemokine RANTES for R5 HIV strains. This 5P12-vMIP-II is shown by NMR to be fully folded and similar in structure 
to wild type vMIP-II. Both vMIP-II and 5P12-vMIP-II showed the ability to inhibit multiple strains of HIV, including several 
R5 strains and an X4 strain. While the 5P12 N-terminus did not improve the potency of the protein, our results suggest 
that vMIP-II does not bind CCR5 in the same way as human chemokines. Rather, vMIP-II has sacrificed some binding 
ability to particular chemokine receptors in order to obtain the ability to bind a broader array of receptors.
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many small molecule inhibitors [27], solidifying the position of 5P12-
RANTES as a potential therapeutic that could be expected to remain 
potent despite a large variation in viral sequence. However, despite the 
nearly uniform positive properties of 5P12-RANTES, one drawback is 
its inability to bind the CXCR4 co-receptor, leading to inactivity against 
HIV viral strains that use this receptor (so-called X4 HIV strains).

Here, we sought to clarify two major issues regarding vMIP-II. 
First, could its anti-HIV properties against R5 virus be improved by 
substituting the N-terminus with the “5P12” sequence, while retaining 
inhibition against X4 virus; and the related second question, namely 
whether vMIP-II binds CCR5 using the same mechanism as that used 
by the human chemokine RANTES. The N-terminus of CC chemokines 
is largely unstructured until it binds the receptor, and as mentioned 
vMIP-II shares significant sequence identity and structural properties 
with RANTES, MIP-1β, and MIP-1α [3,28-30]. Therefore, this strategy 
could lead to a dual-acting HIV entry inhibitor that would be highly 
effective against both R5 and X4 strains of HIV. In addition, such work 
could add to our understanding of the manner in which vMIP-II is 
able to bind chemokine receptors. Our results show that while 5P12-
vMIP-II retained activity against both R5 and X4 HIV strains, the 

activity was not improved by the 5P12 N-terminus compared to the 
wild type N-terminus. This result suggests that vMIP-II does not bind 
the chemokine receptor in the same manner as wild type chemokines, a 
possibility that has been previously suggested [31].

Materials and Methods
Construction of 5P12-vMIP-II

The gene for vMIP-II was constructed and cloned into pET32a(+) as 
described [32]. 5P12-vMIP-II was made by replacing the first ten amino 
acid of vMIP-II (protein sequence: LGASWHRPDK) with the first ten 
amino acids of 5P12-RANTES (protein sequence: QGPPLMATQS). 
The replacement was carried out using oligonucleotide primers and 
PCR to replace the sequence coding for the N-terminal amino acids.

Protein production

vMIP-II and 5P12-vMIP-II were expressed in the pET32a(+) 
vector with a thioredoxin fusion tag (Novagen, Madison, WI). The 
plasmids were transformed into Escherichia coli BL21(DE3) (Novagen, 
Madison, WI) cell and expressed in 15N minimal medium using 
15NH4Cl as the sole nitrogen source. The protein induction was carried 
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Figure 1: HIV entry process. (A) Left: On the HIV surface, the envelope protein gp120 (orange) interacts with receptor CD4 (red) and co-receptor CCR5 or CXCR4 
(purple) on the host cell surface. Middle: When viral gp120 binds to the receptor CD4 and co-receptor, gp120 undergoes a conformational change and exposes gp41 
(cyan and green). (B) Left: Solution structure of vMIP-II as determined by NMR spectroscopy (gold ribbon). Right: vMIP-II (gold) binds to HIV co-receptor CCR5 or 
CXCR4 (purple) and blocks HIV entry. The structure was made with the program Chimera [58] using PDB structure 1VMP [3].
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Figure 2: Sequence comparison of vMIP-II, 5P12-vMIP-II, 5P12-RANTES and RANTES. Conserved cysteine residues are highlighted in orange. The first ten residues 
in the N-terminus of vMIP-II are highlighted in red. The first ten residues in the N-terminus of 5P12-vMIP-II are highlighted in cyan. The sequence number is according 
to vMIP-II.
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out with 1 mM IPTG (Isopropyl β-D-1-thiogalactopyranoside) as  
the (insertion) final concentration when the O.D.600 reached 0.6-0.8 
at 37°C. The minimal medium was then shifted to 16°C and shaking 
continued for 16 hours. The cells were harvested by centrifugation at 
6000×g for 10 min. The cell pellet was resuspended in 50 mM Tris, 50 
mM NaCl, 3 mM EDTA, 5M Guanidinium/HCl, pH 8 with fresh 10 
mM benzamidine and then passed through a French Press twice at 
16,000 psi. β-mercaptoethanol was then added to a final concentration 
of 5 mM, and the resulting solution was incubated at room temperature 
with stirring for 1 hour. Then, the solution was centrifuged at 20,000×g 
for 1 hour. The supernatant containing the denatured protein was 
added dropwise to 10X volume of low salt buffer (50 mM Tris, 50 mM 
NaCl, pH8) with fresh 5 mM β-mercaptoethanol and stirring. Then, 
the solution was incubated at room temperature without stirring for 2 
hours. The solution was then centrifuged at 20,000×g for 30 min and 
the supernatant was dialyzed against 4 L high salt buffer (20 mM Tris, 
500 mM NaCl, 5 mM Imidazole, pH 8) twice overnight at 4°C. After 
dialysis, the solution was applied to a Nickel chelating column and 
eluted with a gradient of imidazole (50 mM to 500 mM). The resulting 
purified protein was dialyzed against 4 L 20 mM Tris, 50 mM NaCl, 2 
mM CaCl2, pH 7.4 overnight at 4°C. The solution was made to 0.02% 
NaN3 to inhibit bacterial growth. To remove the thioredoxin fusion tag, 
10 units of recombinant enterokinase (Novagen, Madison, WI) were 
added. The solution was incubated at room temperature for 3-5 days to 
allow protease cleavage. Precipitated material was removed by adjusting 
the solution to contain 10% acetonitrile and 0.1% trifluoroacetic acid 
followed by centrifugation at 15,000×g for 30 min. The supernatant 
was purified by a C4 reversed-phase chromatography column (Vydac, 
Hesperia, CA) using the Akta purification system (GE Healthcare, 
Pittsburgh, PA). The protein was dried to powder using the Labconco 
freeze dry system (Labconco Corporation, Kansas City, MO).

NMR

All NMR samples were prepared in a buffer of 20 mM potassium 
phosphate, 10 μM DSS, 5% D2O, and 0.02% NaN3 at pH 5.5 or pH 7. 
All 2D HSQC experiments were carried out on a Bruker 600 MHz 
AVANCE III spectrometer equipped with a TCI cryoprobe at 25°C. 
HSQC experiments were run with carrier positions of 4.75 ppm for 1H 
and 119.3 ppm for 15N, sweep widths of 9615.385 Hz (15.9 ppm) for 
1H and 1938.672 Hz (31.8) ppm for 15N with 672* (* complex points) 
points in 1H and 128* points in 15N. All chemical shifts were referenced 
to internal DSS (2,2-dimethyl-2- silapentane-5-sulfonic acid). Data 
were processed and viewed using nmrDraw, PIPP [33,34] and Sparky 
[35]. The chemical shift changes compared to wild type protein were 
calculated as described previously [32].

Viral reagents

Viral plasmids containing the env gene from HIV-1 were obtained 
from the NIH AIDS Research and Reference Reagent Program, Division 
of AIDS, NIAID, NIH as follows: PVO, clone 4 (SVPB11), AC10.0, 
clone 29 (SVPB13) was from Dr. David Montefiori, Dr. Feng Gao and 
Dr. Ming Li [36]; pWITO4160 clone 33 (SVPB18) was from Drs. B. 
H. Hahn and J. F. Salazar-Gonzalez [36]; DU156.12 (SVPC3) was from 
Drs. D. Montefiori, F. Gao, S. Abdool Karim and G. Ramjee [37,38]; 
CAP210.2.00.E8 (SVPC17) was from Drs. L. Morris, K. Mlisana and D. 
Montefiori [37]; ZM109F.PB4 (SVPC13) was from Drs. E. Hunter and 
C. Derdeyn [39]; pHxB2-env was from Dr. Kathleen Page and Dr. Dan 
Littman [40]; pSG3Δenv was from Drs. John C. Kappes and Xiaoyun 
Wu [41,42]. 

Single-round HIV infection assays

Single-round infection assays were performed as described [43]. 
Briefly, TZM-bl cells stably expressing CD4, CCR5 and CXCR4 co-
receptors were maintained in DMEM (Dulbecco’s Modified Eagle’s 
Medium) with 10% FBS (fetal bovine serum). The cells were seeded in 
96-well plate and serial dilutions of vMIP-II, 5P12-vMIP-II and 5P12- 
RANTES were added from the top row to the bottom row, as follows: 
20 μl ligand of different concentration was added into the first row and 
mixed well with culture media. Then 20 μl media was removed and 
added into the second row, and so on. Virus was then added into each 
well containing different ligands. The cells were incubated at 37°C for 
24 hours, at which time the medium was changed, and the cells were 
then incubated for another 24 hours. Infection with the pseudovirus 
allows expression of a β-galactosidase reporter gene. PBS containing 
0.5% NP-40 was used to lyse the cells and substrate chlorophenol red-D-
galactopyranoside (CPRG, Calbiochem, CA) was added into each well. 
The absorbance signal was measured at 570 nm and 630 nm. The ratio 
of 570/630 for each well was calculated. EC50 values were determined 
using a linear equation fitted between two data points surrounding 
50% inhibition. For presentation purposes, data shown in figure 4 were 
plotted and fitted as curves using a four-parameter logistic equation in 
KaleidaGraph (Synergy Software, Reading, PA).

Results
Construction and structure of 5P12-vMIP-II

The “5P12” chemokine N-terminus consists of a 10 amino acid 
sequence directly before the conserved Cys-Cys of the chemokine: 
QGPPLMATQS (Figure 2). Thermocycling techniques with 
overlapping oligonucleotide primers were used to replace the existing 
N-terminus of vMIP-II with DNA encoding these amino acids. The 
gene was placed into a pET32a(+) expression vector with an N-terminal 
thioredoxin fusion tag, and the protein was produced and purified as 
described in Methods. Figure 3 shows the 15N-1H correlation spectra of 
15N labeled 5P12-vMIP-II. At pH 7, the protein showed good chemical 
shift dispersion and homogeneous peak height, indicating a nicely 
behaved protein that is not likely experiencing multiple conformations 
(Figure 3A). Chemical shift assignments of wild type vMIP-II have 
been carried out at pH 2.5 [3], pH 3.25 [44] and pH 5.4 [32], so spectra 
were also obtained of 5P12-vMIP-II at pH 5.5, and a comparison is 
shown in figure 3B. The assignments were adapted from Zhao and 
LiWang [32]. An overlay of vMIP-II and 5P12-vMIP-II at pH 7 is shown 
in the Supplementary Material (Figure S1). As seen in figure 3, 5P12-
vMIP-II shows similarity to the wild type protein in most regions of 
the spectrum, but the spectrum contains no matching peaks for the 
N-terminal residues, as expected. However, seven new peaks could 
be observed in the 5P12-vMIP-II spectrum (red) that were not close 
to any assigned peaks from the wild type vMIP-II spectrum (black). 
These likely correspond to the 7 non-Pro amino acids that are different 
between the variant and wild type vMIP-II (Figure 2 and Figure 3B). 
Moreover, peaks in the variant spectrum near the resonances in the 
wild type spectrum for G2, Q33, and K37 could be observed when the 
contour level is lowered indicating that these are likely the analogous 
resonances of the variant (data not shown). Finally, the 5P12 variant 
contains two additional glutamines, Q1 and Q9; in the HSQC spectrum 
two additional pairs of side-chain peaks are observed, indicating 
the presence of Q1 and Q9 in 5P12-vMIP-II. Therefore, the HQSC 
spectrum is fully consistent with a folded 5P12-vMIP-II.

While a comparison of the wild type and variant spectra indicate 
an overall similar structure, some regions with significant changes 
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compared to the wild type protein were observed in 5P12-vMIP-II. 
Specifically, nine out of 71 residues (residues: 2, 15, 32, 33, 34, 35, 39, 
50, and 71) showed chemical shift changes that were bigger than 2 
standard deviations from the average. One of these (residue 2) is in the 
mutated region and another (residue 71) is at the C-terminus. Others 
include amino acids near Cys 35 (that participates in a disulfide bond 
with Cys 11 that is adjacent to the mutated N-terminus) and amino 
acids near Cys 51 (that participates in a disulfide bond with Cys 12). 
Figure 3C shows chemical shift changes at each residue in 5P12-vMIP-
II compared to wild type vMIP-II. Figure 3D maps these onto the 
structure of the wild type protein and shows the structure of the wild 
type protein. Most significant changes occur near these N-terminus-
adjacent disulfide bonds. Overall it can be concluded that 5P12- vMIP-
II is a folded protein that is quite similar in tertiary structure to wild 
type vMIP-II.

Anti-HIV function of vMIP-II and 5P12-vMIP-II

While the anti-HIV properties of vMIP-II have been known for 
some time, few studies have reported assays against multiple viral 
strains. For this work we used single-round HIV infection assays, in 
which a viral particle lacking key elements of the HIV genome (but 
having a functional HIV envelope) is used to infect target cells. The 
viral particle is therefore the same size and has the same surface 
proteins (and is presumed to have a similar ability to infect the host cell) 
as replication-competent HIV, but is not able to replicate. This type of 
assay is therefore highly useful as an efficient, accurate test of inhibition 
of HIV entry into the host cell, with each different “pseudovirus” 
defined by the different sequences of the envelope proteins (i.e., gp120) 
on the surface [45].
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We tested wild type vMIP-II against seven strains of pseudotyped 
HIV: R5 strains PVO.4, AC10.0 and pWITO4160 clone 33 (SVPB18) 
(all from subtype B, which tends to be common in North America and 
Europe) [36]; R5 strain ZM109F.PB4, DU156.12 and CAP210.2.00.
E8 (all from subtype C, which tends to be common in Asia and 
Africa) [37]; and X4 strain HxB2 (subtype B). Strain PVO.4 also has 
been categorized as a “Tier 3” HIV strain, indicating low sensitivity 
to antibody-mediated neutralization, and adding significance to the 
search for inhibitors for such “difficult to inhibit” viruses [46]. Strain 
ZM109F.PB4 is also particularly significant because it has shown orders 
of magnitude less sensitivity than most strains to another major type of 
HIV inhibitor, namely the lectin griffithsin [47].

As shown in figure 4 and table 1, vMIP-II was able to inhibit these 
strains at high nanomolar or low micromolar levels. We then tested 
5P12-vMIP-II against these strains. It also showed effectiveness at high 
nanomolar or low micromolar levels, but did not show improvement 
over the wild type protein (Table 1). As a control, 5P12-RANTES was 
tested, and it showed excellent potency against R5 strains as expected, 
but no effectiveness against the X4 strain (Figure 4 and Table 1).

Discussion
Since its discovery in 1996-1997 [4-6], vMIP-II has been the focus 

of a variety of studies, based on its ability to bind multiple chemokine 
receptors. Most of these studies dealt with the potential of this virally-
encoded chemokine homolog to inhibit inflammation. Indeed, vMIP-
II has been shown in various animal models to attenuate cellular 
infiltration after spinal cord injury [11-13], to protect the brain against 

focal cerebral ischemia [14], and to protect allograft survival in both the 
heart and the cornea [9,10]. However, from the earliest reports, it was 
also clear that vMIP-II possessed the ability to inhibit HIV infection. 
Further, the unique ability of this chemokine analog to tightly bind both 
of the main HIV co-receptors (CCR5 and CXCR4) gives it the potential 
to be more broadly acting than any of the current chemokine-based 
inhibitors, which are limited by their ability to bind receptors from only 
one family (i.e., either CCR5 or CXCR4). This is particularly significant 
given that initial HIV infection occurs with viruses using CCR5 (so-
called R5 strains), while progression to AIDS is often correlated with 
the switch to X4 virus in a patient [48].

Structural studies have been reported on full length vMIP-II 
[1-3,44,49] and on peptide fragments of vMIP-II [1]. Other work 
has focused on peptides derived from vMIP-II in order to generate 
smaller molecules that retain anti-HIV properties, including the use of 
D-peptides [50-53]. Interestingly, in studies investigating the binding 
of vMIP-II to human chemokine receptors, data indicate that vMIP-II 
does compete with natural chemokines but does not necessarily bind 
CCR5 analogously. In these studies, it was found that while mutating 
negatively charged positions in CCR5 affected binding by both vMIP-
II and RANTES, vMIP-II maintained the ability to bind CCR5 when 
extracellular loop 2 of CCR5 was mutated, while binding by natural 
chemokines was abrogated [31]. This “partial cross-competition” 
as described by the authors is supported by our ongoing work that 
demonstrates the importance of basic residues in the ability of vMIP-
II to bind receptors (which is likely important in other chemokines) 
but the possible lack of importance of a hydrophobic residue at the 13th 
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nM
nM nM nM

%
 In

fe
ct

io
n

%
 In

fe
ct

io
n

%
 In

fe
ct

io
n

%
 In

fe
ct

io
n

120

100

80

60

40

20

0

120

100

80

60

40

20

0

140

120

100

80

60

40

20

0

120

100

80

60

40

20

0
10           10           10            10           10           10           10           10           10

-3               -2               -1               0               1                2                3                4               5

10            10            10            10            10            10            10            10  -3               -2                -1                0                  1                2                 3                4 
10        10         10         10          10         10         10         10          10 

-3            -2            -1             0              1              2             3              4             5 10                      10                      10                      10                      10                     10 0                            1                             2                            3                             4                            5

5P12-RANTES
5P12-RANTES 5P12-RANTES

5P12-RANTES

5P12vMIP-II

5P12vMIP-II

5P12vMIP-II
5P12vMIP-II

vMIP-II
vMIP-II

vMIP-II

vMIP-II

Figure 4: Inhibition of HIV-1 infection by vMIP-II, 5P12-vMIP-II and 5P12-RANTES in single-round infection assays. (A) PVO.4 (subtype B, R5); (B) CAP210.2.00.E8 
(subtype C, R5); (C) ZM109F.PB4 (subtype C, R5); (D) HxB2 (subtype B, X4). Wild type vMIP-II is shown in black; 5P12-vMIP-II is shown in red; 5P12-RANTES is 
shown in blue. A typical experiment is shown. Each experiment was repeated at least 3 times. Error bars indicate the standard deviation from a triplicate experiment.

Strains/Compounds

vMIP-II 5P12-vMIP-II
5P12-
RANTES

EC50 (nM)
Fold
difference
from WT

EC50 (nM)
Fold
difference
from WT

EC50 (nM)

PVO.4 (subtype B, R5) 88.3 ± 17 1 109 ± 10 1.2 0.049 ± 0.015
AC10.0.29 (subtype B, R5) 2450 ± 530 1 2360 ± 730 1 0.70 ± 0.19
WITO4160.33 (subtype B, R5) 8220 ± 1600 1 10100 ± 1800 1.2 2.36 ± 0.57
CAP210.2.00.E8 (subtype C, R5) 2630 ± 790 1 2570 ± 530 1 1.14 ± 0.27
DU156.12 (subtype C, R5) 8540 ± 1400 1 9850 ± 1800 1.2 1.32 ± 0.095
ZM109F.PB4 (subtype C, R5) 199 ± 36 1 154 ± 43 0.8 0.065 ± 0.016
HxB2 (subtype B, X4) 931 ± 210 1 1010 ± 320 1.1 No activity

Table 1: EC50 values for single-round infection assays for vMIP-II, 5P12-vMIP-II and 5P12-RANTES. Each experiment was repeated at least 3 times in triplicate and the 
values shown are +/- the standard deviation of the EC50 from all experiments. The experiments were carried out with TZM-bl target cells.
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Conclusions
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