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Abstract
Despite occupancy-based switching and daylight-based dimming controls being widely believed to have 

tremendous energy saving potential, there is often a lot of variability in the actual savings across customer 
sites. A major challenge in a reliable, site-specific assessment of these advanced lighting controls is the skew 
associated with time-logging using a low-power clock. We develop a robust analytical approach based on grid-
search optimization and linear regression to correct the clock skew by exploiting the information stored in the 
cyclical nature of occupancy patterns in commercial buildings. We provide independent validation of the results 
using illuminance data to illustrate the strength of our approach. We also conduct comprehensive sensitivity 
analyses of the results by varying the assumptions about the underlying parameters. Our results demonstrate 
that believable visualizations and reliable savings estimates can be generated using a low-power clock, and a set 
of data-driven algorithms and analytics.

Keywords: Data loggers; Occupancy-based switching; Daylight 
harvesting; Clock skew correction; RC oscillator clock; Grid-search 
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Introduction
Occupancy sensors are sensing devices commonly connected to a 

room’s lighting (and sometimes also to Heating, Ventilation, and Air-
Conditioning (HVAC) systems), which shut down these services when 
the space is unoccupied. Occupancy sensors for lighting control use 
infrared (IR) or acoustic technology, or a combination of the two. The 
location and field of view of the sensor are important determinants 
of its effectiveness. Most systems incorporate a delay time before 
switching. If the sensor detects no motion for the entire delay time then 
the lights are switched off. Occupancy sensing technologies have been 
widely studied in literature [1-5]. Savings potential of the order of 30% 
to 50% has often been estimated by switching off the light when a space 
is unoccupied [3].

Daylight harvesting is a type of lighting control that is typically 
designed to maintain a minimum recommended light level by reducing 
the use of artificial light when natural daylight is available. The daylight 
harvesting techniques rely on light level data collected from a photo-
sensor such as a photo-diode. Daylight harvesting technologies have 
also been extensively studied in literature [6-10]. Savings potential of 
the order of 20% to 60% has been estimated for daylight harvesting-
based dimming controls [7].

Several commercial products are available in the market, which 
aim to reduce the lighting energy consumption of indoor spaces by 
combining the occupancy sensing and daylight harvesting techniques. 
Examples include Leviton’s Universal Vacancy/Occupancy Sensors, 
Acuity’s Sensor Switch, WattStopper’s wall switch sensors, etc. 
The OccuSwitch Wireless Control System by Philips is one such 
commercial product using a variant of the occupancy sensing and 
daylight harvesting technology. 

Philips occuswitch wireless system

The Philips OccuSwitch Wireless Control System senses occupancy 
and light level to automatically turn lights off in an unoccupied space and 
to dim the artificial lights in a space in proportion to the daylight. The 
system consists of two main components: (1) a wall mounted dimmer 

switch, and (2) a battery-operated ceiling-mounted combination of 
photo and occupancy sensor, interconnected by ZigBee PRO wireless 
technology. Some of the important features of this OccuSwitch system 
are as follows:

•	 Motion detection: It uses a passive infrared (PIR) sensor 
technology to detect motion and an advanced logic to identify 
major and minor motions. The system adapts to accommodate 
varying user occupancy patterns to automatically adjust 
the shut-off time delay. Its detection technology with auto-
calibrated sensitivity helps avoid false “on” triggers. The sensors 
include an adjustable rotating shield which enables field of view 
adjustments for occupancy detection.

•	 Light level detection: The light level reporting frequency is 
dynamically adapted to save battery energy. The reporting 
interval is longer when the space is unoccupied or when 
the light level is stable. But the sensor reports immediately 
when the light level changes by more than a predetermined 
threshold. Thus, the system quickly responds to changes in the 
environment while preserving battery energy.

•	 Coverage: Its design can support up to ten sensors and 
switches (in any combination) in a single system to maximize 
and expand the system coverage. 

•	 Communication system: The occupancy sensor detects 
motion and the photo-sensor measures the light level. These 
are then communicated to the dimmer switch over the radio 
interface. Its wireless communication system automatically 
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selects the best available channel to provide secure, reliable 
communication between devices, and automatically 
switches between two different antennas to improve/restore 
communication. Its transceiver is designed to maximize gain 
and minimize losses between transmitter and receiver to 
enhance the range and reduce the signal attenuation. The user 
can also change the communication channel through installer 
settings to mitigate interference. All messages are encrypted 
using a 128-bit advanced encryption standard (AES) algorithm 
with unique keys.

•	 Power source: Battery lifetime is estimated to be more than 7 
years.

•	 User interface: It has Traffic LED Indicator (red-yellow-green) 
to provide instant feedback to the users on the system status, 
and uses a USB interface to enable quick software upgrades in 
the field.

Occuswitch data logger

While the advanced lighting controls based on occupancy 
sensing and daylight harvesting, such as the OccuSwitch system 
from Philips, have the potential to reduce lighting energy 
consumption by 30% to 50% in commercial buildings, the results 
are found to be highly variable across sites [1,3]. Therefore, there 
is a need to accurately quantify the actual savings potential for 
specific buildings, offices, and rooms. These calculations need to be 
performed taking into account the actual usage patterns, occupancy 
behavior, geometry, geography, climate, and type of use of individual 
indoor spaces. Performing these computations for the specific 
indoor spaces can help a lighting control system manufacturer 
convince the users of the benefits of installing advanced lighting 
controls such as occupancy sensing and daylight harvesting. A 
strong business case for adopting these systems can only be made 
on the basis of the savings potential for that specific customer site. 
A tool that can effectively quantify the spatio-temporal patterns in 
occupancy, usage and energy consumption can also be a great aid 
for other purposes such as energy auditing. In addition to accurate 
logging and estimation, some of the other desirable features in 
any such product would include portability, easy mounting, quick 
setup, absence of wiring and low cost. These portable devices do 
not have to be in physical contact of high voltage wires. As a result, 
they can be installed by anyone as opposed to the clamp-on power 
meters which can only be installed by licensed electricians and 
hence incur higher costs. Various commercial products have been 
developed to address this challenge by different companies selling 
lighting controls. The indoor standalone OccuSwitch Data Logger 
by Philips is an example of such devices.

Philips OccuSwitch Data Logger is a standalone wall/ceiling 
mountable unit that monitors the light level (illuminance) and 
occupancy status of the room continually. It consists of a passive 
infrared sensor which works as motion detector, a photo-sensor that 
measures the amount of light in the room. It also contains a clock for 
logging the relative timestamps and a battery to power the system. At 
periodic intervals, the logger records a timestamp (recorded by the 
clocks), illuminance (recorded by the photo-sensor) and occupancy 
status (recorded by the PIR motion detector). After the installation 
period (of about one to three months) the logger is removed from wall 
and connected to a PC through a USB port. An accompanying software 
program downloads the data, performs numerical analysis and then 
estimates the energy savings potential.

Neves-Silva et al. [11] provide the details of the framework for a 
software tool that models the energy consumption from monitored 
data on building infrastructure usage, predicts consumption under 
alternative scenarios and supports the decision-making process 
providing investment recommendations and installation plans. The 
authors of this study acknowledge that, as noted by Parker et al. [12] 
and Vieira [13], the behavior of occupants of a building can have a 
very large impact on energy consumption. Therefore, they make a 
strong case for sensing and energy metering at the actual facility where 
installation of an energy-efficient technology is being considered. The 
same argument applies for our efforts towards estimating the savings 
through the occupancy-based switching and daylight harvesting-based 
dimming of lights. However, these prior research studies do not address 
the challenges involved in effective use of raw data collected through 
inexpensive sensors such as OccuSwitch Data Loggers. They instead 
assume the availability of clean sensor and metering data, focusing 
on the recommendation of the most appropriate configuration of 
technologies and devices tailored to the specific needs of individual 
buildings, rooms and users.

Problem Statement
The OccuSwitch Data Logger (or Data Logger for short) consists 

of a low-accuracy, low-power clock made up of an RC (Resistor-
Capacitor) Oscillator circuit. This clock is known to have a skew of the 
order of up to 15 minutes (plus or minus) per day. The skew is usually 
constant for each clock at a given temperature, but differs across 
different clocks and different temperatures. Given the indoor usage of 
the data loggers, we can ignore the variance in skew due to temperature 
fluctuations without introducing too much error. The main advantage 
of using this low-accuracy clock is that it uses less power and hence 
guarantees a longer battery life.

In addition to the RC clock, the loggers also contain a much more 
accurate Quartz crystal clock with accuracies of the order of 10 parts 
per million (ppm) or so. It is, however, a lot more power-intensive. So 
the logger uses the accurate clocks sporadically. The accurate clock is 
used only during a part of the occupied time periods where accurate 
time measurements are especially important. For most of the other 
time, the low-power RC clock is used to measure relative timestamps. 
Each time the logger switches from more accurate to less accurate clock 
and vice versa, there is also likely to be a very small handoff delay. The 
timestamps for all data entries are compared with the timestamp of 
the time when the logger is connected to a PC at the end of the data 
collection period and the actual time corresponding to each data entry 
is then calculated based on the relative timestamp value. When the 
room is unoccupied, the RC clock is used almost exclusively, while the 
Quartz clock is used for a part of the time when the room is occupied. 
Due to these differences, the error in recorded times accumulates at 
different rates during the occupied and the unoccupied time periods.

Due to the errors in time measurement, the timestamps recorded 
with the data entries are different from the actual times when those 
data were recorded. Over a three month period, the difference between 
actual and recoded timestamps can be as high as two to three days. 
Therefore, a posterior correction is indispensable in order to perform 
any informed decisions based on this data and to visualize this data 
effectively. The available data consists of occupancy and illuminance. 
Illuminance is affected by artificial light as well as daylight. The 
latter contains information about the time-of-day, but is difficult to 
separate from the artificial light and is further affected by issues such 
as room orientation, window location, use of blinds, cloud cover etc. 
Occupancy, on the other hand, is usually well tied to the occupants’ 
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work schedules. Most rooms in commercial and office buildings are 
much more heavily used during the weekdays than during the nights 
and weekends. Furthermore, these usage patterns are often highly 
cyclical and repetitive in nature. Therefore, they constitute a useful 
input for any correction technique. We use the occupancy information 
to estimate the clock skew and use the illuminance information as an 
independent source of validation data for the clock skew estimation. 
Exploiting the occupancy patterns in commercial or office buildings for 
correcting the clock skew constitutes an interesting research challenge. 
This problem can be formally represented as follows:

[ ] { } { }
 

{ }, ,1.. , 1.. 1..
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where,

T: Number of data entries corresponding to an occupancy-related 
event, that is, occupancy changing from unoccupied to occupied (from 
0 to 1) or vice versa.

N: Number of data loggers

tnτ : Measured time corresponding to the tth data entry for nth logger

tno : Occupancy value immediately after an occupancy-related 
event corresponding to the tth data entry for nth logger, { }0,1tno ∈
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where,


,n occb : Estimate of clock skew for the nth logger, when occupied 
(note that the Quartz clock is used for a part of the occupied time),


,n unoccb : Estimate of clock skew for the nth logger, when unoccupied 
(note that the RC clock is used for the entire duration of the unoccupied 
time).

Model
This model exploits the patterns in the office space usage of the 

occupants of an office. In reality, during the time for which the room is 
occupied, both the accurate and the less accurate clock is used for part 
of the time. The decision to use a particular clock during a certain part 
of the occupied time is dependent on a complex internal logic, which 
is difficult to model accurately. Instead, we assume that the clock skew 
during the occupied time has a constant average value. The accuracy 
of our results justifies this assumption. During the unoccupied state, 
the less accurate clock is used to preserve battery life. Therefore we can 
safely assume a constant skew during the unoccupied periods. All time 
in the model below is measured backward, with time 0 representing 
the point in time when the study period ended and the logger was 
removed from the ceiling and connected to a PC through a USB port. 
The timestamp for each data entry is the difference between the time 
when that particular data was recorded and the time 0 representing the 
time when the logger is connected to a PC.
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Clock skew is defined as a multiplicative factor that modifies 
the time measured by the logger. A factor > 1 (< 1) means that the 
measured time moves faster (slower) than actual time by that factor.

In addition, there might be some day-specific factors that might 
affect the schedules of all the occupants of a building similarly. For 
example, all (or most) occupants might want to leave earlier than usual 
on a Friday, or arrive later than usual on a Monday, or leave especially 
early on the Wednesday before Thanksgiving Day in the U.S., etc. We 
call this a day-specific additive bias, which is assumed to be constant 
across all occupants.
[ ] { }d d 1..D
 p' : Matrix of the values of day-specific additi  bias in workday start times.ve

∈

[ ] { }d d 1..D
q' : Matrix of the values of day-specific additi  bias in workday end times.ve

∈

Furthermore, there could be some individual-specific factors. For 
example, some individuals have a tendency to work until late and 
therefore they stay longer in the office than others. These factors are 
specific to an individual occupant and hence they can be assumed 
to remain constant across time for a specific logger (that is, for the 
occupant(s) of a room containing a specific logger). We call this a 
personal additive bias, which is assumed to be constant across all 
loggers.

[ ] { }n 1..
Matrix of the values of personal additive bias in workday start t er' : im s.

n N∈

[ ] { }n 1..
Matrix of the values of personal additive bias in workday end t es' : im s.

n N∈

Under this general model, the workday start and end time for room 
containing nth logger on dth day is as follows.

dndn d n dn= +p' +r' + 'x x ε                    (1)

dn d n dndny = +q' +s' + 'y γ                                           (2)

where,

dnx and dny are the standard (or typical) values of workday start 
and end times on each day, e.g. 8 am and 5 pm respectively. dn'ε and 

dn'γ  are random variables (with zero means) representing errors in this 
model. These can be considered as the cumulative effects of all the other 
factors affecting the work-day start and end times.

For the room with the nth logger, let fdn be the occupied fraction of 
the measured time from the start time of dth work-day until the end of 
the study period. Also, for the room with the nth logger, let gdn be the 
occupied fraction of the measured time from the end time of dth work-
day until the end of the study period.

Thus, 
~

dn dnx f  is the length of the measured occupied time and 

( )
~

* 1dn dnx f−  is the length of the measured unoccupied time from the 
start of dth work-day for the occupant of the room with the nth logger. 

So, 
~

n,occb
dn dnx f  is the length of the actual occupied time and ( )

~

n,unocc

1
b

dn dnx f−  is the 

length of the actual unoccupied time from the start of dth work-day for 
the occupant of the room with the nth logger. As a result, the total actual 
duration of time from the start of dth work-day till the end of the study 
for the occupant of the room with the nth logger is
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clock skews, n,occb  and n,unoccb respectively, for all { }n 1..N∈

Therefore,

( )( )
~

n,occ n,unocc* a * a * 1dndn dn dnx x f f= + −                (3)

and by an analogous argument we can show that

( )( )
~

n,occ n,unocc* a * a * 1dn dn dndny y g g= + −                  (4)

From equations 1, 2, 3, and 4 we get,

( )( )
~

dnd n dn , ,x  + p'  + r'  + '  = x  * * * 1dn n occ dn n unocc dna f a fε + − ,                (5)

and

( )( )
~

d n dn , ,dny  + q'  + s'  + '  = y  * * * 1n occ dn n unocc dndn a g a gγ + −        (6)

Upon rearranging terms we get, 

( )( )
~

, , d n dn= * * 1  - p' - r' - '  dn dnn occ dn n unocc dnx a f a f x ε+ −

and

( )( )
~

, , d n dny = * * 1  - q' - s' - '  n occ dn n unocc dndn dna g a g y γ+ −

where, 
, , , ,  and dn dn d d n n dn dn d d n np p r r q q s sε ε γ γ′ ′ ′ ′ ′ ′= − = − = − = − = − = −

So the overall model is as follows: { } { }1.. , 1..d D n N∀ ∈ ∈

( )
~ ~

, ,* * * 1 *n occ dn n unocc dn d n dndn dn dny a g y a g y q s γ= + − + + +      (7)

and

( )
~ ~

, ,* * * 1 *n occ dn n unocc dn d n dndn dn dny a g y a g y q s γ= + − + + +      (8)

The values of  dnx ,  dny , dnf  and dng  are known because they can be 
directly measured. The values of dnx  and dny  can also be ascertained 
based on our knowledge of the typical working hours. Alternatively, 
we could also consider asking the user to provide the typical working 
hours of the office as one of the user-provided inputs, to obtain more 
accurate estimation results.

So the parameters to be estimated are, { }, ,, , , 1.. ,n occ n unocc n na a r s n N∀ ∈  
and { }, 1..d dp q d D∀ ∈ , in the most general case. So, for this general 
model, the total number of unknown parameters = 4N + 2D and total 
number of observations = 2ND . In reality, the number of unknown 
parameters is likely to be lower than this if we make some further 
simplifying assumptions as described in the next section.

Data Description
The data is collected from an office building at one of the customer 

sites in the United Kingdom. There were 22 loggers used for this study. 
All the loggers were installed in private office spaces on a single floor, 
one logger per private office. Out of these 22 loggers, data from one 
was tagged as “Battery Failure” and therefore was excluded from all the 

computations. So we had usable data from 21 loggers over the study 
period.

The data used for the estimation process was contained in comma 
separated variable files (.csv files) each containing the data downloaded 
from one logger. The data was over a time period of approximately 
three and half months (103 days: starting from December 5th 2011 to 
March 16th 2012). However, the actual number of days with data was 
much fewer. Most of the useful observations were concentrated in 
the 42 days period between December 7th 2011 and January 17th 2012. 
This is likely so because at this customer site, the customer decided to 
remove the loggers from their respective locations but did not connect 
them to a PC for around 2 months. This created additional challenges 
in getting useful information out of the data.

Each comma separated variable file consisted of five columns:

1. Time: Time when that observation was recorded. Measured in 
year, month, day-of-month, hour, minute and second.

2. Occupancy: A 0/1 binary variable indicating whether or not the 
occupancy sensor detected the room as occupied. Data can be 
recorded for various reasons, including a change in occupancy 
value. In records where the observation indicates a change in 
occupancy, the occupancy column contains the occupancy 
value just after the change had happened. For example, when the 
room’s occupancy status changes to occupied from previously 
unoccupied state, the Occupancy column records a 1.

3. Illuminance Level: Illuminance measured by the photo-sensor 
in Lux.

4. Light State: A 0/1 binary variable indicating the light state 
estimated by a pre-existing algorithm using the time series 
of illuminance data. A light state value of 1 means that the 
artificial light is on and 0 means off.

5. Reason: The reason why that particular observation was 
retained. In order to minimize the storage needs on the chip, the 
loggers store only a relevant subset of all the observations. As 
a result, the sensor readings are not continuous, but rather are 
quantized. Only those readings are logged which correspond to 
a timestamp where something worth noting has happened. An 
observation can be logged and retained for one of the following 
six reasons:

a. OCCUPANCY: If the occupancy state changed from 0 to 1 
or from 1 to 0.

b. FAST: If the photo-sensor detected a rapid change in 
illuminance level, which is usually an indication of artificial 
light being turned on or off.

c. EXTREME: If a local maximum or a local minimum in 
illuminance level is observed. Here, a local maximum 
(minimum, respectively), in a time series data like this, is 
defined as the maximum (minimum, respectively) value of 
the measured entity in a small time period containing the 
time when that value was measured. In other words, all 
values measured at times just before and just after that value 
was measured should be less than or equal to (greater than or 
equal to, respectively) that value.

d. LARGE: If a large (to be contrasted against a fast) change is 
observed in the illuminance level.
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e. CONSTANT: If no observation is recorded for a long period 
of relatively little activity and no significant changes in 
illuminance level, then a few intermediate observations are 
recorded to demarcate the periods of constant illuminance 
from those of slowly changing illuminance.

f. DUPLICATE: Some additional observations to improve the 
computations and visualization.

In addition, each data file also contains (1) one value for 
“HoldTime”, i.e., the time-off delay in milliseconds, and (2) one 
value for “Threshold”, i.e., the minimum recommended illuminance 
level on the photo-sensor in Lux. The minimum recommended 
illuminance level is the amount of illuminance that is deemed to 
be sufficient for the occupants to perform their desired activities 
satisfactorily and comfortably. An example of the data file is shown 
in Table 1, which displays a snapshot of the top 20 rows of one such 
data file.

Raw data analysis

Figures 1a, 1b show the aggregated occupancy patterns and 
illuminance levels, respectively, recorded by all 21 working loggers, 
against time-of-day in hours. Similarly, Figures 2a, 2b show the 
distribution across time-of-day of all the instances when the 
occupancy changes from 0 to 1 and from 1 to 0 respectively, for all 21 
working loggers. The time-of-day values are the raw measurements 
as measured by the loggers, uncorrected for clock skew. Figures 1 
and 2 demonstrate how the raw data is almost uniformly distributed 
across different times-of-the-day. This temporal distribution 
clearly shows that this data is highly unusable in its current form 
for any analysis and visualization purposes. In fact, the distribution 
of points on horizontal lines representing occupancy = 0 and 
occupancy = 1 in Figure 1b is so uniform that they appear to be 
parts of a continuous line. This motivates the clock skew correction 
efforts in the subsequent sections.

Time Occupancy Illuminance Level Light State Reason Hold Time Threshold
12/12/2011 3:31 1 37 1 OCCUPANCY 978000 37
12/12/2011 3:46 1 37 1 FAST
12/12/2011 3:46 1 61 1 FAST
12/12/2011 3:47 1 37 1 EXTREME
12/12/2011 3:47 1 49 1 FAST
12/12/2011 4:03 1 37 1 FAST
12/12/2011 4:03 1 12 1 DUPLICATE
12/12/2011 4:03 1 12 0 FAST
12/12/2011 4:04 1 12 0 DUPLICATE
12/12/2011 4:04 0 12 0 OCCUPANCY
12/12/2011 6:36 0 0 0 FAST
12/12/2011 6:36 0 0 0 DUPLICATE
12/12/2011 6:36 1 0 0 OCCUPANCY
12/12/2011 6:37 1 37 0 EXTREME
12/12/2011 6:51 1 37 0 FAST
12/12/2011 6:51 1 12 0 FAST
12/12/2011 6:53 1 12 0 DUPLICATE
12/12/2011 6:53 0 12 0 OCCUPANCY
12/12/2011 13:25 0 0 0 EXTREME

Table 1: A snapshot of a data file.

 (a) Illuminance (b) Occupancy 

Figure 1: Distribution of Illuminance in Lux and occupancy against time-of-day, using pooled data from all 21 working loggers.
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(a) Occupancy changes from 0 to 1 (b) Occupancy changes from 1 to 0 
Figure 2: Histogram of time-of-day when occupancy changes from 0 to 1 and from 1 to 0 using pooled data from all 21 working loggers.

 
 (a) Illuminance (b) Occupancy 

Figure 3: Distribution of illuminance in Lux and occupancy against time-of-day using data from one specific logger.

 (a) Occupancy changes from 0 to 1 (b) Occupancy changes from 1 to 0 

Figure 4: Histogram of time-of-day when occupancy changes from 0 to 1 and from 1 to 0 using data from one specific logger.
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Figures 3a, 3b and 4a, 4b display the same four charts displayed in 
Figures 1a, 1b and 2a, 2b respectively, but now for one specific logger 
rather than for the aggregation of data from all 21 loggers. As can be 
observed from inspection of Figures 3a, 3b and 4a,4b, the conclusions 
drawn earlier based on aggregate data do not change. It is still very 
difficult to make any sense out of this data because the occupancy and 
illuminance data is distributed seemingly randomly across the day.

Figures 5a, 5b display the distribution of occupancy by day, for 
aggregated data from all loggers, and for data from a specific logger, 
respectively. If we had accurate timestamp data, each of these figures 
should have shown seven-day cycles with five continuous days of 
high occupancy followed by two days of low or zero occupancy. This 
is because of the fact that most people tend to work for many more 
hours during an average weekday than during an average weekend 
day, and hence occupy their office rooms longer on weekdays than on 
weekends. It is interesting to note that even though Figure 5a contains 
some cyclical patterns, but it is still very difficult to identify the five-
day weeks in most cases. This is due to the aggregation of data with 
different skew rates. This is clear when we look at Figure 5b. The cycles 
in Figure 5b are a lot more prominent and are easy to group into 
five-day periods, which correspond to weekdays in each week. This 
gives us insight into how we can approach the problem of clock skew 
correction. It is interesting to note that for both Figures 5a, 5b, there 

is very little data beyond Day 50 or so. This was found to be the case 
for all the loggers from which we collected the data. We suspect that 
the loggers were removed from ceiling around that time and stored 
for some more days before connecting to a PC and retrieving the data 
from them. This conjecture seems reasonable especially because we 
found very little data of any kind beyond a certain day for each of the 
21 working loggers.

Solution Algorithm
The overall solution framework is presented in Figure 6. As the first 

step of the algorithm, we performed data cleaning, where we removed 
false triggers. These correspond to data entries where the occupancy 
sensor shows an occupancy value of 1 even though the room is, in 
reality, unoccupied, and vice-versa. This can happen due to various 
reasons including people passing by close to the room entrance, 
some quick fluctuations in the room’s heating patterns, maintenance 
personnel entering the room briefly during night time (to remove trash 
etc.), room occupants remaining steady for a long period of time, or 
simply due to sensor inaccuracies. Some of these false alarms can be 
easily detected by identifying occupancy periods which are exactly 
equal to the time-off delay (hold time) period in duration, indicating 
instantaneous movement detection but nothing after that instance. 
So the first step of the solution algorithm is vital because it removes 

 (a) For all logger data (b) For an individual logger data 
Figure 5: Distribution of occupancy by day using pooled data from all 21 working loggers and using data from one specific logger.

Figure 6: The overall solution framework.
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such false triggers. Note that the entire data cleaning step and all other 
steps in the estimation algorithm are fully automated and have been 
embedded into our final software product. We used our data mining-
based insights to fine-tune the algorithmic parameters.

Even after the data cleaning step, the linear regression model 
presented in Section 3 by equations (7) and (8) cannot be used directly 
for estimating the clock skew. This is primarily because based on 
the raw timestamp data it is very difficult to identify which day each 
observation belongs to. Hence we cannot directly calculate dnx  and dny  
(i.e., the durations of time periods from the typical start time of each 
day till the end of the study period, and the duration of time periods 
from the typical end time of each day till the end of the study period), 
which are necessary input data elements to run the regression models 
given by equations (7) and (8) in Section 3. If we annotate the bar chart 
in Figure 5b with names of weekdays (as shown in Figure 7) the cyclical 
patterns do not match with weekdays in the raw data. For example, 
looking at Figure 7, some weeks seem to be starting on a Wednesday, 
some on a Sunday, some on a Saturday, etc. So the first step towards 
identifying the correct times is to identify the correct day (of the week) 
corresponding to the data entries. Therefore, after data cleaning, our 
next step in skew correction involves a coarser level correction where 
the output of the task is the correct value of day for each data entry.

Day-of-week identification algorithm

For this task, we rely on the previously stated assumption that 
office rooms tend to be less occupied on weekends and public holidays 
as compared to that on working days. Therefore, we formulate the 
problem as an optimization problem where the objective function is 
to minimize the amount of time for which the room was occupied on 
holidays (that is, weekend days and public holidays). In this first step, 
we are looking for only an approximate estimate of the skew rate so that 
we get the day correct. Therefore, in order to simplify the estimation 
process, we estimate the skew rate for each logger separately rather 
than pooling in the data from all 21 loggers. Also, we assume a single 
skew rate value for each logger, rather than estimating one skew rate 
value for occupied duration and one value for unoccupied duration 
as we suggested in the general problem formulation described by 
equations (7) and (8).  So the simplified problem for a specific logger n 

is described formally below:

[ ] { }


1..
Estimation Al, gorithmtn tn t T nboτ

∈
→ →

We formulate the problem as follows:

First we note that, as mentioned earlier, all time in the model is 
measured backward, with time 0 representing the point in time when 
the study period ended and the logger was removed from the ceiling 
and connected to a PC through a USB port. Let Ln represent the true 
time in seconds since the last midnight (as per the clock in the PC) when 
the study period ended for a logger number n. For example, if the study 
period ended at 3:30 pm on some day then, L= (12+3)*3600+30*60= 
55,800 seconds. Let us denote the last day of the study period as day 
0. Let H denote the set of integers representing days that fall on 
weekends and public holidays during the study period when measured 
backward from the last day of the study period. As mentioned earlier, 

the input data is represented as [ ] { } { }1.. , 1..
,tn tn t T n N
oτ

∈ ∈ . Let us denote 

the approximate clock skew to be estimated as b. [ ] { }1..n n N
L

∈ , H and 
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∈ ∈  are the three main inputs of this optimization 
problem, while b is the only output of the model. The following 
expression represents the union of all the time intervals when the room 
was occupied according to the raw times measured by the logger.
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If the logger’s average skew rate is b, then this can be written in 
terms of the union of all the time intervals when the room was occupied 
according to the skew-corrected time measurements as follows:
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The union of all time intervals corresponding to the weekends and 
holidays according to accurate time measurements is as follows:

( )1 *86400 *86400,n n
i H

i iL L
b b∈

− 
+ + 

 


Note that all times are measured backward from the end of the 
study period. The number 86400 equals the number of seconds in a 
day (24*60*60). The set of time intervals (according to skew-corrected 
accurate time) that fell on weekends or public holidays when the 
room containing the th logger is occupied is given by the following 
expression:
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Therefore, the mathematical formulation of the optimization 
problem minimizing the total duration of time that the room containing 
the nth logger was occupied on holidays (that is, on weekends and public 
holidays) is given as follows:

{ }

( ) ( )1
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This is a single variable continuous optimization problem that 
has a very complicated objective function (as shown in Figures 8a, 8b, 
and 8c, for three representative loggers). Also, we need to solve it only 
approximately because a more accurate estimation will follow in the 
subsequent step. Therefore, we opt for a simple grid search technique. 
Based on our prior knowledge about the accuracy of the clocks, we 

Figure 7: Distribution of occupancy by day (using data from one specific 
logger): with day labels.
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expected the skew rate to be at most 15 to 30 minutes per day, i.e., 
approximately 1%-2%. So, in order to be very conservative, we decided 
to focus our grid-search for the skew rate variable within the range of 
[0.9, 1.1]. Also, we decided to use 200 points in our grid. That way we 
fixed our tolerance value at 0.2/200 = 0.1%. Thus over a span of 100 
days we are within approximately 2.5 hours error. This easily suffices 
the purpose of day-identification as specified for this task.

Figures 8a, 8b, and 8c provide three different examples of the value 

of objective as a function of the grid-search parameter ( )nb . In the 

case of Figure 8a, the optimal objective function value does not reach 0 
for any value of skew, but in Figure 8b there is a unique skew value at 
which the objective function dips to zero, while in Figure 8c, not only 
does the objective function value reach 0 at optimality, but it stays at 
zero for a range of skew rate estimates.

In order to avoid inclusion of false positive occupancy events, we 
excluded all occupancy periods of duration less than 20 minutes (as 
recorded by the logger) from this grid-search algorithm.

At the end of day-of-week estimation step, we have an approximate 
estimate of the clock skew, but it needs to be further refined, because:

1. We have just one skew-rate estimate for occupied and 
unoccupied times.

2. Even if the grid-search picks up the grid point which is the 
nearest to the actual skew rate, we would still have up to a 
maximum of 2.5 hours of error in the corrected time values.

3. In cases, where we have multiple optimal points identified in 
the grid search, estimation accuracy will be further impacted. 
For these cases, in the grid-search we arbitrarily decided to pick 
the lowest skew estimate that gives the zero objective function 
value in the grid-search.

Therefore, we proceed to the next step, which corresponds to the 
preprocessing step for the subsequent regression step.

Regression preprocessing
There are two main sub-steps within the regression preprocessing 

step, namely, a) identification of working-day blocks, and b) assignment 
of each block to a day.

Identification of working-day blocks: As mentioned before, 
the raw data contains a sequence of timestamps each providing the 
illuminance value and the occupancy level at a particular point of time. 
A quick look at the data shows that, as one might expect, for various 
reasons people in office buildings often go in and out of rooms and 
other office spaces. Therefore, even during the time when an employee 
is at work (during working hours), the occupancy sensor might indicate 
several periods of occupancy and non-occupancy interspersed with 
each other. An example of a typical occupancy pattern might include 
a 2 hour occupied period, then a 40 minute unoccupied period, then a 
10 minute occupied period, then a 45 minute unoccupied period, then 
a 3 hour 20 minutes occupied period and so on. At the end of the work 
day, one expects a sustained period of several hours (e.g. 8 to 15 hours) 
when the room is continuously unoccupied. But even that is often 
disturbed by short periods where maintenance personnel occupy the 
space or by false triggers indicating short occupancy periods, etc. So, in 
general, it can be a difficult task to identify workday start and end times 
from a given occupancy time series dataset. Therefore, we invested a 
significant amount of effort to identify good heuristic rules to identify 
the data entries corresponding to the start and end times of a working 
day, which can be used as inputs to the subsequent regression model.

 
(a) Objective function never reaches 0 

 (b) Objective function reaches 0 at optimality for a unique 

 (c) Objective function reaches 0 for a range of 

value of the grid search parameter 

 
values of grid-search parameter 

Figure 8: Three examples of objective (occupancy duration on holidays) as 
function of grid search parameter for specific loggers.
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The following rule-set was used for this purpose. Note that, in 
the following rule-set, the terms such as ShortOccupancyTimeR-
emovalThreshold, MinOutOfOfficeTimeBetweenBlocks, MaxBlock-
LengthThreshold, MinTotalOccupancyTimeInABlock, and MinCon-
tinuousOccupancyTimeInABlock are parameters of the algorithm. 
The purpose of these rules was to identify sets of consecutive data 
entries such that each set is to be considered as belonging to the same 
working day block.

a. First, any occupied time period less than 
ShortOccupancyTimeRemovalThreshold minutes in length 
was excluded from the calculations involving identification 
of working-day block, i.e., that period was assumed to be 
unoccupied instead. This is done in order to remove false 
occupancy triggers.

b. Next, any two subsequent blocks have to be separated by at 
least MinOutOfOfficeTimeBetweenBlocks hours. If not, they 
will be considered the same block. This is done to ensure that a 
brief period for which a person steps out of the office during the 
day is not falsely assumed to be the end of his/her working day.

c. Next, any block of length greater than MaxBlockLengthThreshold 
hours was excluded from the calculations involving 
identification of working-day block. This is done to ensure that 
the algorithm does not wrongly consider a sequence of data 
entries longer than a reasonable length (e.g. 18 hours) as a valid 
block.

d. Next, a block with less than MinTotalOccupancyTimeInABlock 
minutes of total occupied time was be excluded from the set 
of observations. This ensures that the algorithms does not 
consider extremely short sequences of data entries (e.g., shorter 
than 150 minutes) as valid blocks.

e. Next, a block without any continuous occupied time period of 
MinContinuousOccupancyTimeInABlock minutes or longer 
was excluded from the set of observations. This is done because 
a person in office, at some point of time, is assumed to be 
spending at least one block of continuous time (e.g., at least 1 
hour) in his/her office.

We used the following values of these five parameters:

ShortOccupancyTimeRemovalThreshold = 30

MinOutOfOfficeTimeBetweenBlocks  = 10

MaxBlockLengthThreshold = 18

MinTotalOccupancyTimeInABlock = 150

MinContinuousOccupancyTimeInABlock = 60.

We chose the values listed above using our understanding of 
a typical work-day at the customer site and using a trial-and-error 
approach. But these values cannot be considered to be appropriate 
for all settings. In general, these parameters must be learned from the 
available data and based on any insights into typical work patterns 
at the targeted office location. Also a sensitivity analysis needs to be 
conducted to identify the impact of varying these parameter values on 
the estimation accuracy. The dependence of the estimation procedure 
on these five parameters (sensitivity analysis) is detailed in the results 
section of the paper.

Assignment of each block to an actual day

Once working-day blocks have been identified, the data entries 

corresponding to the start and end times of all blocks are obtained and 
the correction based on estimated clock skew rate from the grid-search 
algorithm is applied to these start and end times. After applying this 
correction, if the start and end times correspond to the same day (e.g. 
fall between 00:00-23:59 hrs of the same day), then the block is assigned 
to that day. However, if they belong to different days, then that block 
is assigned to the day which contains the largest portion of that block.

Regression analysis
There are two main steps in the regression analysis phase, namely, 

a) logger-specific preliminary regression and outlier removal, and b) 
cross-logger regression and accommodation of day-specific parameters. 
We describe these two steps below.

Logger-specific preliminary regression and outlier removal: In 
this step, we first perform a preliminary regression for each logger to 
estimate the parameters in equations (7) and (8) while excluding the 
day-specific additive bias (pd, qd) in workday start and end times and 
exclude personal additive bias rn in workday start times. Day-specific 
additive bias parameters are excluded simply because they cannot be 
estimated using data from just one logger, because the model is over-
specified. Also, we would like to avoid having to estimate personal 
additive bias for both workday start and end times because that leads 
to model instability in many cases. Note that we know apriori that our 
estimated bias values an,occ and an,unocc must lie in a small band around 
1.0, which is ensured by fixing the workday start time parameter to 
zero. We choose to keep workday end time bias parameter rather than 
start time bias parameter in our estimated model based on our own 
observations that typically people tend to have more variation in the 
time at which they leave office in the evening than the time when they 
arrive at the office in the morning.

Thus, we estimate the parameters of the following equations for 
each logger n.

( ) { }
~ ~

, ,* * * 1 *   d  1..dn dn dnn occ dn n unocc dn dnx a f x a f x Dε= + − + ∀ ∈  (9)

and

( ) { }
~ ~

, ,* * * 1 * +  d  1..n occ dn n unocc dn dn dndn dn dny a g y a g y s Dγ= + − + ∀ ∈   (10)

We estimate three parameters for each logger, namely an,occ , an,unocc  
and sn. We used ordinary least squares estimator for this task.

After regressing first time, we identify and eliminate up to two 
outliers per logger. An observation is considered an outlier if the ratio 
of root mean squared error after and before removal is less than a 
certain threshold. We picked this threshold to be equal to the 4th power 
of the ratio of number of observations after and before removal. In 
general, the decision of what constitutes an outlier should be based 
on the improvement in some error measure and that needs to be 
weighed against the reduction in number of available observations due 
to outlier removal. Root mean squared error is chosen because it is 
consistent with the objective to be minimized in ordinary least squares 
regression analysis. Similar to the five parameters described earlier 
for the identification of working-day blocks, the choice of maximum 
number of outliers (MaxOutliers = 2 in our case) and the power to 
which the ratio of number of observations is raised in order to compare 
with the ratio of root mean squared errors (PowerInOutlierRemoval = 
4 in our case) are both considered to be additional parameters to which 
the sensitivity of our results is tested. The results of the sensitivity 
analysis are described in the results section of the paper. Thus, these 
two additional parameters for which the sensitivity of our results is 
measured are:
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MaxOutliers = 2

PowerInOutlierRemoval = 4

Additionally, the typical start and end times of a day (i.e., dnx  
and dny ) are assumed to be 8 am and 5 pm respectively (that is, 
TypicalDayStartTime = 8, and TypicalDayEndTime = 5). We also 
perform an analysis of the sensitivity of our results to these two 
parameters in the results section of the paper. Thus, these two additional 
parameters for which the sensitivity of our results is measured are:

TypicalDayStartTime = 8

TypicalDayEndTime = 5

Cross-logger regression and accommodation of day-specific 
constants

In this step, we first run a regression across loggers using the 
same model as given by equations (9) and (10). Next we identify the 
special days for which it makes sense to use a day-specific additive 
bias term for either the work-day start time or for the work-day end 
time, or for both. We avoid using an additive bias term for each day 
in order to keep the model simple and to avoid over-fitting. Note 
that, as mentioned earlier, if we use day-specific constants for all days, 
then the number of coefficients to be estimated will be increased by 
50*2=100. We base the decision of whether to use an additive bias for 
a specific work-day’s start or end time based simply on whether the 
mean error for that day’s start or end time in the aforementioned first 
cross-logger regression run exceeds some threshold. This threshold 
(SpecialDayConstantThreshold) is yet another parameter for which the 
sensitivity analysis is performed. We use a default value of 1.5 hours for 
this parameter. That is,

SpecialDayConstantThreshold = 1.5

After including these day-specific additive biases for start and/or 
end times of certain days, we estimate the final cross-logger regression 
model whose specification looks the same as equations (7) and (8) 
except that,  and  terms are included only for some selected days, 
and the person-specific additive bias for the start time of a work-day 
(rn) is set to zero for reasons mentioned earlier.

The results presented in the next section are obtained by using this 
final regression model.

Results and Discussion
This section details the main results of our estimation process. We 

compare and contrast these results with the charts presented earlier 
which were generated using the raw data prior to skew correction. 
Figure 9a shows the distribution of occupancy changes against 
time-of-day using skew-corrected data and Figure 1b shows the 
corresponding distribution of occupancy changes against time-of-day 
using raw data prior to skew correction. Figure 9a shows the plot of 
occupancy changes against time-of-day for all 21 loggers, which fails 
to show any useful visual information due to too many data-points, 
similar to what is displayed in Figure 1b. Figures 10a, 10b show the 
distribution of times when occupancy changes from 0 to 1 and from 1 
to 0 respectively, against time-of-day for the skew-corrected data. These 
two figures clearly indicate that a majority of 0-1 and 1-0 occupancy 
changes happen during 6 am and 9 pm for the skew-corrected data, in 
contrast to Figures 2a, 2b, which display almost uniform distribution 
of occupancy change times. Furthermore, Figure 10a shows that the 
0-1 occupancy changes happen most often during the 7:00-10:00 am 
period which is a reasonable time period for many employees to enter 
their office in the morning. On the other hand, Figure 10b shows that 
the 1-0 occupancy changes happen most often during the 4:00-7:00 
pm time period, which seems to be a reasonable time period for many 
employees to leave their office to go home in the evening. It is also 
interesting to note that there seems to be a quite a drop in the number 
of occupancy changes (both from 0 to 1 and from 1 to 0) during noon 
to 3:00 pm time period, which could possibly be because it includes 
most employee’s lunch times.

Figures 9b and 11a, 11b are analogous to Figures 9a and 10a, 10b 
respectively, but represent data for a specific logger rather than the 
data from all 21 loggers. Figure 9b shows that most occupancy changes 
happen during 6 am and 7:30 pm time period for this specific room 
after skew correction is applied, in contrast to the almost arbitrary 
distribution of occupancy change times before skew correction, as 
displayed by Figure 3b. Similarly, the trends in 0-1 and 1-0 occupancy 
changes for this specific logger as reflected in Figures 11a and 11b are 
similar to those for the entire 21-logger data as reflected in Figures 
10a and 10b. This is in contrast with the lack of reasonable trends as 
displayed for pre-correction data in Figures 4a and 4b respectively.

 
(a) For all logger data                                       (b) For an individual logger data  

Figure 9: Distribution of occupancy changes against time-of-day after skew correction, using pooled data from all 21 working loggers and using data from one 
specific logger.
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Figures 12a and 12b display the distribution of illuminance 
against time-of-day respectively for all loggers and for data from a 
specific logger. They are to be contrasted against Figures 1a and 3a 
respectively. As displayed in both Figures 12a and 12b, the illuminance 
is substantially higher during the 6:00 am to 6:00 pm time period. 
Such trends are absent in Figures 1a and 3a. Another way to visualize 
the data in Figures 1a and 12a is provided by Figures 13a and 13b 
respectively. These two figures show, for the pooled data from all 21 
working loggers, the average illuminance for each hour of the day 
before and after skew correction respectively. Before skew correction, 
the average illuminance profile per hour looks very flat, whereas after 
skew correction, there is a clear peak around 11 am-noon time. Also, 
high average illuminance values are found for each hour between 6 am 
and 4 pm. All of this illuminance-related evidence displayed in Figures 
12a, 12b, 13a, and 13b, provides an independent validation of our skew-
correction algorithm, which does not use illuminance data at any step of 
the process. Intuitively, one expects the illuminance due to both natural 
and artificial lights to be higher during the working day than during 
the night time. The evidence in Figures 1a, 3a, 12a, 12b, 13a, 13b clearly 
demonstrates that the data after clock skew correction corroborates to 
this claim much more strongly than before the correction.

The results based on the pooled data from all 21 working loggers, 

which are graphically illustrated in Figures 1, 2, 9a, 10, 12a and 13, 
are succinctly summarized in Table 2. We divide each day into two 
periods. In the top three rows (excluding the header rows) of Table 2, 
we provide the percentage of occupancy changes that happen during 
the 7am-7pm period across all rooms with loggers, compared with the 
percentage of occupancy changes during the remaining 12 hours of the 
day. First row shows the 0-to-1 occupancy changes, second row shows 
the 1-to-0 occupancy changes and third row shows the combined total 
number of occupancy changes. For each row, we show the percentage 
occupancy changes before and after skew correction for the 7am-7 pm 
period and for the 7pm-7am period. Additionally, in the fourth row 
after the header rows, we provide the average illuminance (in Lux) for 
the 7am-7pm period and for the 7pm-7am period for both the raw 
data and the skew-corrected data.  For a significant part of the period 
between 7 am and 7 pm most people are expected to be in their work-
places and hence more frequent occupancy changes and higher average 
illuminance values are expected during that period. That is exactly what 
is observed in Table 2.

Note that for the winter months of December through February 
for which the study was conducted, the sunrise times in U.K. can be 
late as (or even later than) 8 am. Similarly, the sunset times in U.K. 
during this period can be earlier than 4 pm. Therefore, the illuminance 

 
(a) Occupancy changes from 0 to 1                      (b) Occupancy changes from 1 to 0

Figure 10: Histogram of time-of-day when occupancy changes from 0 to 1 and from 1 to 0, after skew correction, using pooled data from all 21 working loggers.

 
(a)  Occupancy changes from 0 to 1                  (b) Occupancy changes from 1 to 0  

Figure 11: Histogram of time-of-day when occupancy changes from 0 to 1 and from 1 to 0, after skew correction, using data from one specific logger.
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is expected to be especially higher during the six-hour period between 9 
am and 3 pm every day. We test this hypothesis in the last row of Table 
2 where we provide the average illuminance values (in Lux) for the 
9am-3pm period and for the 3pm-9am period for both raw and skew-
corrected data. The post-correction data clearly shows that the average 
illuminance is significantly higher in the 9am-3pm period than in the 
3pm-9am period. However, such difference is not observed in the raw 
data. As noted earlier, this illuminance data was never used anywhere 
in the skew correction process, further validating our methodology and 
results.

Sensitivity analysis

As mentioned in Section 5, there are a number of parameters whose 
assumed values impact the performance of our overall algorithm for 
clock skew estimation. These parameters and their assumed values 
(also called base values from here onward) are the following.

1) ShortOccupancyTimeRemovalThreshold = 30

2) MinOutOfOfficeTimeBetweenBlocks  = 10

3) MaxBlockLengthThreshold = 18

4) MinTotalOccupancyTimeInABlock = 150

5) MinContinuousOccupancyTimeInABlock = 60

6) MaxOutliers = 2

7) PowerInOutlierRemoval = 4

8) TypicalDayStartTime = 8

(a) For all logger data (b) For an individual logger data

Figure 12: Distribution of illuminance in Lux against time-of-day, after skew correction, using pooled data from all 21 working loggers and using data from one 
specific logger.

(a) Before skew correction (b) After skew correction 

Figure 13: Average illuminance in Lux by hour-of-day, before skew correction and after skew correction using pooled data from all 21 working loggers.

Before Skew Correction After Skew Correction

7am-7pm 7pm-7am 7am-7pm 7pm-7am

Percentage of 0-1 
Occupancy Changes 47.60% 52.40% 68.50% 31.50%

Percentage of 1-0 
Occupancy Changes 45.80% 54.20% 65.20% 34.80%

Percentage of All 
Occupancy Changes 46.70% 53.30% 66.90% 33.10%

Average Illuminance 30.8 27.5 31.7 22.9

9am-3pm 3pm-9am 9am-3pm 3pm-9am

Average Illuminance 29.9 28.8 35.4 24.6

Table 2: occupancy changes and higher average illuminance values.
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9) TypicalDayEndTime = 5

10) SpecialDayConstantThreshold = 1.5.

In addition to these 10, we also tested the sensitivity of the results to 
one more factor. Before using the day-of-week identification algorithm, 
we do some data preprocessing to ensure that we filter out any data 
that might indicate false positives recorded by the occupancy sensors. 
In some cases, very short occupancy intervals are noted by the sensor, 
which often occur because an instance of motion is followed by a time-
off delay interval without any motion. This results in small periods 
which are recorded as occupied times but often are equal to or slightly 
longer than the time-off delay period of the occupancy sensor. So in 
data cleaning, we try to remove these very short occupancy periods 
with length below a certain threshold. Let us denote this threshold 
by DataCleaningMinOccupancyTimeThreshold. It is measured in 
minutes. The default (base) value of this parameter that we used was 
DataCleaningMinOccupancyTimeThreshold = 20.

We use the following four metrics to characterize the sensitivity of 
our results to these 11 parameters.

1. Number of OBServations available for the final cross-logger 
regression (NOBS): We use this measure to characterize the 
performance of the overall algorithm because, among other 
things, greater number of observations is beneficial for the 
stability and robustness of our results.

2. Root Mean Squared Error in the block start and end Times 
(RMSET): This measure characterizes the magnitude of 
remaining variations in the start and end times of workday 
blocks. This is measured in number of hours.

3. Sum of Squared Deviations in Clock Skews (SSDCS): This is 
defined as the sum of squares of differences between the clock 
skew values (both for occupied and unoccupied time periods) 
for each logger as compared to those for the base values (

0
,n occb  and 0

,n unoccb  respectively). This gives a measure of 

how much the estimated skew values vary with variations in 
assumed parameter values.

( ) ( )( )2 20 0
, , , ,1

N
n occ n occ n unocc n unoccn

SSDCS b b b b
=

= − + −∑
4. Sum of Squared Clock Skew Percentage (SSCSP): This 

is defined as the sum of squares of percentage skews during 
occupied and unoccupied times for each of the loggers, where 
percentage skew is defined as the multiplicative factor that 
modifies the time measured by each logger minus 1. This gives 
us a measure of the magnitude of estimated clock skew.

( ) ( )( )2 2
, ,1

1 1N
n occ n unoccn

SSCSP b b
=

= − + −∑ .

The variation in the values of each of these four metrics with 
variations in each of the 11 parameters listed above is given in Table 
3. The first column of the table indicates the parameter that we varied 
to obtain the results in that row. Note that all the other parameters 
are kept at their base values for the results presented in that row. The 
second column indicates the new value of the parameter that is varied. 
The third column indicates the base value. Fourth through seventh 
columns indicate the values of the four metrics as described above, 
which are used to measure the sensitivity of the results. The first row 
below the header row indicates the metrics corresponding to the base 
values of all parameters. For each parameter, the row corresponding to 
the base value of that parameter is indicated in bold letters.

In order to implement our algorithm as software accompanying the 
OccuSwitch data logger hardware, we need to ensure that the results 
are robust to individual parameter values that we assumed. Below is the 
summary of our findings about the sensitivity of the results.

•	 Sensitivity to ShortOccupancyTimeRemovalThreshold 
parameter: With any variations in this parameter above the 
value of 15 minutes, the estimated clock skew values do not 
vary much with the highest SSDCS values being 0.0025, 
which means that the root mean squared (RMS) deviation is 
about 0.77% translating into 11 minutes per 24 hours or 19 
hours over a 100 day time period. The sum of squared clock 
skew percentages (SSCSP values) varies only between 0.0328 
and 0.0474 over the entire range (of 15 through 45 minutes) 
of ShortOccupancyTimeRemovalThreshold values, which 
translates into RMS skew values in the range of 67 to 81 hours 
over 100 days. This displays relatively stable behavior compared 
to the estimated value of about 72 hours per 100 days. Most 
importantly, the root mean squared error in block start and 
end times (RMSET) varies only mildly between 1.9081 and 
2.0127 (only about 5% variation). Notably, our base parameter 
value of ShortOccupancyTimeRemovalThreshold = 30 minutes 
turns out to be the value that minimizes the RMSET value. The 
number of observations (NOBS) varies between 709 and 826, 
with the maximum NOBS value also corresponding to the base 
parameter value that we chose. Thus our choice of base value 
for the ShortOccupancyTimeRemovalThreshold parameter, 
which was originally based on a trial-and-error procedure, 
is further justified by this sensitivity analysis. This sensitivity 
analysis demonstrates that the choice of this parameter’s value 
can impact the SSDCS and SSCSP values to some extent but the 
impact on error (RMSET) is relatively low.

•	 Sensitivity to MinOutOfOfficeTimeBetweenBlocks  
parameter: As expected, the increasing value of this parameter 
translates to fewer observations being included in the 
regression analysis and therefore the NOBS value shows non-
decreasing trend against this parameter value. For all values of 
MinOutOfOfficeTimeBetweenBlocks  parameter below 11.5 
hours, the clock skews are almost unaffected by variation in this 
parameter as can be seen from negligible SSDCS values and very 
stable SSCSP values. For MinOutOfOfficeTimeBetweenBlocks  
= 11.5 hours, there is a slightly higher movement of SSDCS and 
SSCSP, but it is still small in an absolute sense. Once again, the 
RMSET value varies in a very thin band of 5.5% or so, and the 
chosen parameter value turns out to be the one that minimizes 
RMSET. In summary, the sensitivity of our results to variations 
in this parameter is negligible.

•	 Sensitivity to MaxBlockLengthThreshold parameter: 
The impact of this parameter on all the four metrics, that is, 
NOBS, RMSET, SSDCS and SSCSP is very negligible. There 
is a small increase in the number of observations available for 
regression (from 620 to 627) with an increase in the value of 
this parameter, which is exactly as we intuitively expect. Also, 
with this increase in the number of observations, the accuracy 
decreases slightly as reflected by the trend in the RMSET values, 
which is again intuitively reasonable. In summary, we conclude 
that in the tested range, between 15 and 21 hours, our results 
are largely unaffected by the variation in this parameter.

•	 Sensitivity to MinTotalOccupancyTimeInABlock parameter: 
As one would expect, with an increase in this parameter’s 
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Parameter Value Base NOBS RMSET SSDCS SSCSP
All Base Parameters 826 1.9081 0 0.0377
ShortOccupancyTimeRemovalThreshold
ShortOccupancyTimeRemovalThreshold
ShortOccupancyTimeRemovalThreshold
ShortOccupancyTimeRemovalThreshold
ShortOccupancyTimeRemovalThreshold
ShortOccupancyTimeRemovalThreshold
ShortOccupancyTimeRemovalThreshold

15
20
25
30
35
40
45

30
30
30
30
30
30
30

709
798
817
826
816
824
819

2.0127
1.959
1.9486
1.9081
1.9348
1.992
1.9498

0.0085
0.0025
0.0007
0
0.0005
0.0022
0.0011

0.0412
0.0328
0.0347
0.0377
0.04
0.0474
0.0451

MinOutOfOfficeTimeBetweenBlocks 
MinOutOfOfficeTimeBetweenBlocks 
MinOutOfOfficeTimeBetweenBlocks 
MinOutOfOfficeTimeBetweenBlocks
MinOutOfOfficeTimeBetweenBlocks 
MinOutOfOfficeTimeBetweenBlocks 
MinOutOfOfficeTimeBetweenBlocks 

8.5
9
9.5
10
10.5
11
11.5

10
10
10
10
10
10
10

849
845
838
826
809
797
756

1.922
1.9213
1.9231
1.9081
1.9438
1.9899
2.0121

0.0001
0.0001
0
0
0
0.0003
0.0013

0.0368
0.0369
0.0375
0.0377
0.0375
0.0388
0.0409

MaxBlockLengthThreshold
MaxBlockLengthThreshold
MaxBlockLengthThreshold
MaxBlockLengthThreshold
MaxBlockLengthThreshold
MaxBlockLengthThreshold
MaxBlockLengthThreshold

15
16
17
18
19
20
21

18
18
18
18
18
18
18

820
822
823
826
827
827
827

1.8939
1.8933
1.8892
1.9081
1.9126
1.9126
1.9126

0
0
0
0
0.0001
0.0001
0.0001

0.0378
0.0376
0.0375
0.0377
0.038
0.038
0.038

MinTotalOccupancyTimeInABlock
MinTotalOccupancyTimeInABlock
MinTotalOccupancyTimeInABlock
MinTotalOccupancyTimeInABlock
MinTotalOccupancyTimeInABlock
MinTotalOccupancyTimeInABlock
MinTotalOccupancyTimeInABlock

60
90
120
150
180
210
240

150
150
150
150
150
150
150

853
851
834
826
802
792
787

1.9888
1.9896
1.9739
1.9081
1.895
1.9003
1.8784

0.0008
0.0007
0.0003
0
0.0051
0.0022
0.0027

0.0338
0.0339
0.0374
0.0377
0.0576
0.0494
0.0502

MinContinuousOccupancyTimeInABlock
MinContinuousOccupancyTimeInABlock
MinContinuousOccupancyTimeInABlock
MinContinuousOccupancyTimeInABlock
MinContinuousOccupancyTimeInABlock
MinContinuousOccupancyTimeInABlock
MinContinuousOccupancyTimeInABlock

30
40
50
60
70
80
90

60
60
60
60
60
60
60

830
830
830
826
817
808
790

1.9067
1.9067
1.9067
1.9081
1.9027
1.8933
1.9224

0.0001
0.0001
0.0001
0
0.0014
0.0017
0.0029

0.0361
0.0361
0.0361
0.0377
0.0468
0.0487
0.0539

MaxOutliers
MaxOutliers
MaxOutliers
MaxOutliers
MaxOutliers
MaxOutliers
MaxOutliers

0
1
2
3
4
5
6

2
2
2
2
2
2
2

846
838
826
823
821
821
821

2.1648
2.124
1.9081
1.9054
1.8984
1.8984
1.8984

0.0003
0.0001
0
0
0
0
0

0.0387
0.0364
0.0377
0.0379
0.0379
0.0379
0.0379

PowerInOutlierRemoval
PowerInOutlierRemoval
PowerInOutlierRemoval
PowerInOutlierRemoval
PowerInOutlierRemoval
PowerInOutlierRemoval
PowerInOutlierRemoval

2.5
3
3.5
4
4.5
5
5.5

4
4
4
4
4
4
4

811
815
820
826
830
832
833

1.7615
1.8411
1.8552
1.9081
1.9191
1.9198
1.9242

0.0006
0.0006
0.0006
0
0.0001
0.0001
0.0002

0.0392
0.0393
0.0393
0.0377
0.0401
0.0395
0.0395

TypicalDayStartTime
TypicalDayStartTime
TypicalDayStartTime
TypicalDayStartTime
TypicalDayStartTime
TypicalDayStartTime
TypicalDayStartTime

6.5
7
7.5
8
8.5
9
9.5

8
8
8
8
8
8
8

827
826
826
826
826
826
826

1.9134
1.919
1.9135
1.9081
1.9186
1.9131
1.9076

0.0001
0
0
0
0
0
0.0001

0.04
0.0395
0.0386
0.0377
0.037
 0.0361
0.0353

TypicalDayEndTime
TypicalDayEndTime
TypicalDayEndTime
TypicalDayEndTime
TypicalDayEndTime
TypicalDayEndTime
TypicalDayEndTime

3.5
4
4.5
5
5.5
6
6.5

5
5
5
5
5
5
5

826
826
826
826
826
826
826

1.9081
1.9081
1.9081
1.9081
1.9081
1.9081
1.9081

0
0
0
0
0
0
0

0.0377
0.0377
0.0377
0.0377
0.0377
0.0377
0.0377

SpecialDayConstantThreshold
SpecialDayConstantThreshold
SpecialDayConstantThreshold
SpecialDayConstantThreshold
SpecialDayConstantThreshold
SpecialDayConstantThreshold
SpecialDayConstantThreshold

0.75
1
1.25
1.5
1.75
2
2.25

1.5
1.5
1.5
1.5
1.5
1.5
1.5

826
826
826
826
826
826
826

1.7996
1.8434
1.8669
1.9081
1.9576
1.9937
1.9937

0
0
0
0
0.0001
0.0001
0.0001

0.0368
0.0377
0.038
0.0377
0.0395
0.0396
0.0396
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value, the NOBS decreases. The accuracy, as reflected by the 
RMSET values, varies in a narrow 5% band between 1.8784 and 
1.9888 around the base value of 1.9081. The SSDCS and SSCSP 
values are very stable up to 150 minutes. For parameter values 
greater than that the SSDCS and SSCSP values are a lot more 
dependent on this parameter’s value. In summary, the RMSET 
value is quite insensitive to the variations in this parameter’s 
value. The values of estimated skews are insensitive up to a 
certain point above which they become more sensitive. So it 
is best to restrict the chosen value of this parameter up to 150 
minutes or so for stable results.

•	 Sensitivity to MinContinuousOccupancyTimeInABlock 
parameter: Including and below 60 minutes, the results (in 
terms of NOBS, RMSET, SSDCS and SSCSP values) are highly 
insensitive to this parameter. However, with increasing value of 
this parameter, the results become more sensitive, presumably 
because large occupied periods get omitted, which starts 
resulting in some drop in NOBS and decrease in accuracy. 
Also, the NOBS value drops with increase in this parameter, 
which is exactly what we expect intuitively. In summary, the 
value of this parameter should not be increased beyond a 
certain threshold (say 80 minutes or so); the base value seems 
quite reasonable; and results are insensitive to variation is this 
parameter within a small band above and a large band below 
this base value.

•	 Sensitivity to MaxOutliers parameter: With an increase 
in this parameter, the estimation error (RMSET) drops up 
to a certain point and becomes stable from there onwards. 
As more outliers are removed the error improves and the 
number of observations drops. However, the results are 
extremely insensitive to this parameter beyond MaxOutliers 
= 2. Furthermore, even below this value, the results are only 
slightly sensitive to the changes in this parameter’s value. This 
also justifies our choice of parameter.

•	 Sensitivity to PowerInOutlierRemoval parameter: As one 
would expect, with an increase in this parameter’s value, NOBS 
value increases. The error (RMSET) remains largely unaffected. 
There is also not a significant dependence of the SSDCS and 
SSCSP values on the value of this parameter. Furthermore, the 
base value of this parameter results in the lowest possible value 
of SSCSP in this range. This also justifies our choice of base 
parameter value.

•	 Sensitivity to TypicalDayStartTime parameter: As seen in 
Table 3, the impact of this parameter on NOBS, RMSET and 
SSDCS is zero or negligible. SSCSP has a clear decreasing 
trend indicating that the net skew in clocks is negative (i.e., 
roughly speaking, more clocks are slower than faster). With 
this parameter varying over three hours (6:30 am to 9:30 am) 
the corresponding variation in SSCSP is equivalent to 4.5 hours 
over 100 days or 2.7 hours over 60 days. These numbers make 

a lot of sense intuitively, especially given the fact that we have 
a special factor for adjusting each logger’s block end times in 
our regression model. In summary, all variations in results are 
either negligibly small, or intuitively reasonable, or both.

•	 Sensitivity to TypicalDayEndTime parameter: As can be seen 
in Table 3 this parameter, by construction, has no impact on 
any results. This is because of the structure of our regression 
model which has a special term (sn) to adjust for this effect, as 
shown in equations (3) and (4).

•	 Sensitivity to SpecialDayConstantThreshold parameter: 
This parameter has zero impact on NOBS and a very negligible 
impact on the SSDCS values. There is a less than 4% variation 
in the value of SSCSP with variations in this parameter. The 
error, as one expects, increases with an increase in the value of 
this parameter.

•	 Sensitivity to DataCleaningMinOccupancyTimeThreshold 
parameter: These results clearly demonstrate the value of data 
cleaning efforts before beginning the actual estimation. As 
long as the value of this parameter is at least 15 minutes, the 
results are extremely insensitive to the value of this parameter. 
However, for DataCleaningMinOccupancyTimeThreshold 
= 5 and 10 minutes, false positives in occupancy data cause a 
considerable decrease in error and the results do depend on 
this parameter value. This justifies the present choice of the 
base parameter value because the results are very insensitive 
to variations in this parameter within a band around the base 
value.

Conclusion
In this study, we proposed a low-power system for accurate logging 

of timestamp data on occupancy and light levels at individual customer 
sites. The system consists of OccuSwitch data loggers and accompanying 
software to analyze the logged data. The OccuSwitch data logger 
consists of a combination of two clocks, a high-power high-accuracy 
clock to measure timestamps when higher accuracy is warranted, and 
a low-power low-accuracy clock to measure timestamps when greater 
power-efficiency is warranted. The low-power clock is used for a large 
proportion of the logging time period thus resulting in longer battery 
life for the data logger. However, the lower accuracy introduces a skew 
in timestamp measurements. In this study, we describe an analytical 
framework to model the clock skew by exploiting the cyclical nature of 
occupancy patterns in commercial buildings. The model is solved using 
a computational approach combining grid-search based optimization 
and regression algorithms. The results are validated against illuminance 
(light level) data. Our results show that our algorithm has a good 
accuracy level. We also conduct a sensitivity analysis indicating that the 
results are robust to small changes in parameter values. Additionally, 
the importance of good data cleaning heuristics is also illustrated by 
our results. Overall, our estimation, validation, and sensitivity results 
demonstrate that accurate visualizations and energy saving estimates 
can be generated using our approach.

DataCleaningMinOccupancyTimeThreshold
DataCleaningMinOccupancyTimeThreshold
DataCleaningMinOccupancyTimeThreshold
DataCleaningMinOccupancyTimeThreshold
DataCleaningMinOccupancyTimeThreshold
DataCleaningMinOccupancyTimeThreshold
DataCleaningMinOccupancyTimeThreshold

5
10
15
20
25
30
35

20
20
20
20
20
20
20

824
824
826
826
826
826
816

2.2203
2.2203
1.9081
1.9081
1.9081
1.9081
1.9348

0.0082
0.0082
0
0
0
0
0.0005

0.0475
0.0475
0.0377
0.0377
0.0377
0.0377
0.04

Table 3: Sensitivity analysis.
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