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Introduction
Early diagnosis and treatment is the key to good outcome 

and recovery of schizophrenia (Sz), a severe and disabling mental 
disorder. Considerable efforts have been made to identify potential 
biomarkers of schizophrenia in neuroimaging, genomics and 
psychophysiological measures, in order to support early diagnosis 
of schizophrenia. Structural imaging studies have reported reduced 
whole brain and hippocampal volumes [1], frontal-temporal gray 
matter volume loss [2], enlarged third and lateral ventricles [1,3], 
white matter abnormalities in the frontal and temporal lobe [4] in 
schizophrenia patients. Functional imaging studies have found that 
prefrontal function declines (“hypofrontality”) before the emergence 
of symptoms and frontostriatal function impaired thereafter [5], and 
decreased activation in the anterior cingulate [6]. There are other 
potential biomarkers such as a lower N-acetylaspartate/creatine ratio 
and dopamine overactivity identified in schizophrenia patients or 
high-risk people with Magnetic Resonance Spectroscopy (MRS), PET 
and Single Photon Emission Computed Tomography (SPECT) [1,3,7-9]. 

Decreased Regional Glucose Metabolism (rGMR) in the 
prefrontal cortex and ACC in schizophrenia was found in FDG-
PET studies [1,3,10,11]. Interestingly, fMRI studies also reported 
decreased hemodynamic responses in the frontal cortex and ACC in 
schizophrenia patients during tasks [12,13]. These observations on 
hypofrontality (reduced metabolism or Cerebral Blood Flow (CBF) 
in the prefrontal cortex) using PET and fMRI trigger the following 
questions: What is the relationship between glucose metabolic and 
hemodynamic processes during neuronal activity? Are schizophrenia 
patients different from healthy controls in such metabolism-blood 
flow relationship?

It was believed that cerebral metabolism and CBF were tightly 
coupled in healthy subjects [14], but a mismatch in CBF and CMRO2 
(cerebral oxygen metabolism rate) was found with PET using visual 

stimulation [15,16]. Then, non-linear flow-metabolism coupling 
was reported in a PET study in response to visual stimulation [17]. 
Pioneering work measuring CBF and metabolism in schizophrenia 
(with nitrous oxide) found no alteration in the overall average 
CBF and oxygen metabolism in patients [18], but it did not rule 
out neurophysiological abnormalities in specific brain regions in 
schizophrenia [19]. Traditionally, local rates of glucose utilization 
(LCMRglu) measured by the autoradiographic 2-deoxyglucose 
method (2-DG) [20,21] was determined following pharmacological 
treatments in schizophrenia [22], and regional CBF measured by 
Xenon-133 inhalation technique [23] was activated in schizophrenia 
patients during the Wisconsin card sorting task [24]. Recently, 
functional neuroimaging studies using PET, SPECT and fMRI have 
found that there is a time-dependent negative correlation between CBF 
and oxygen metabolism during visual stimulation [25-28], suggesting 
energy demands are met through anaerobic metabolism initially and 
require increased aerobic metabolism as stimulation continues [28]. 
In addition, spatial congruence was found in the activation maps of 
oxygen metabolism and hemodynamic response using H2(15)O PET 
and fMRI [29-31], and the sensitivity of fMRI can equal that of H2(15)
O PET [32]. Further, a significant correlation between CBF, cerebral 
glucose concentration and oxygen metabolic rate was found in an 
animal model of ischemia [33]. 
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However, little is known about the relationship between glucose 
metabolism and CBF in patients with schizophrenia during cognitive 
tasks. In our previous research [34], this was studied using FDG-PET 
and BOLD fMRI during an auditory prepulse-to-attention task with a 
small sample (10 patients and 7 healthy controls). In this research, we 
further explored it with a larger sample using FDG-PET and BOLD 
fMRI during a visual attention task. 

Materials and Methods
Subjects 

17 unmedicated schizophrenia patients (6 females, 11 males; age: 
31.8 ± 10.4 years) were recruited for the spatial focus-of-attention 
study and 38 healthy subjects (15 females, 23 males; age: 30.5 ± 8.1 
years) served as controls. All participants were screened for severe 
medical illness (such as diabetes), neurological illness (such as head 
trauma, central nervous system (CNS), neurological disease and 
seizure disorder) and substance abuse (within the past 6 months of 
entry into the study). They also had a negative urine toxicology screen 
and females a negative pregnancy test on scan day. All subjects were 
without metallic implants and eligible for MRI scan. They provided 
written informed consent in accordance with the Mount Sinai School 
of Medicine and James J. Peters Institutional Review Board guidelines. 
There were no significant differences in age and gender between the 
two groups. For detailed demographic characteristics of the subjects, 

FDG-PET data

Positron Emission Tomography (PET) scans (20 slices, 6.5-mm 
thickness) were obtained in the Neuroscience PET laboratory at 
the Mount Sinai Medical Center [36,37], with a head-dedicated GE 
scanner (model PC2048B) with measured resolution of 4.5 mm in 
plane (4.2-4.5 mm across 15 planes). T1-weighted axial MRI scans 
were acquired with the GE Sigma 5× system (TR=24 ms, TE=5 ms, 
flip angle=40°, slice thickness=1.2 mm, pixel matrix=256×256, field of 
view=23 cm, total slices=128). During the uptake period, the subjects 
performed a spatial focus-of-attention task and details of the task 
paradigm are described [38]. Briefly, the paradigm contained four 
runs and each lasted for 264 s. Each run began with a 24 s period of 
blank, the stimuli were presented at 2 s intervals (total stimulus block 
time=24 s), and there was a rest interval of 24 s afterward. During the 
task, the subjects clicked on a mouse button each time he detected 
the large letter target, ignored the flanking letters, and pressed on the 
right button for a right-sided target and the left button for a left-sided 
target.

fMRI data

Patients and controls in the study were scanned on a head-
dedicated Siemens Allegra 3T MRI scanner at MSMC. T1-weighted 
MP-RAGE (Magnetization Prepared Rapid Gradient Echo) imaging 
was acquired (208 slices with slice thickness=0.82 mm, matrix 
size=256×256×208, FOV=21 cm, TR=2500 ms, TE=4.38 ms, TI=1100 
ms and an 8° flip angle FLASH acquisition) for high resolution 
structural images with good gray/white matter contrast.

Echoplanar images were acquired with a multi-slice 2D-EPI 
sequence (128×28 matrix, TR=2s, TE=40 ms, flip angle=90°, FOV=23 
cm, slice thickness=5 mm, skip=2.5 mm), yielding 14 slices. BOLD 
fMRI acquisition occurred during a block-design visual spatial 
attention task. Details of the paradigm are described in (Buchsbaum 

paradigm: left hemifield-large letter, left hemifield-small display with 
flankers, right hemifield-large letter and right hemifield-small display 
with flankers. 

Image processing and data analysis 

Each PET image was preprocessed with non-brain removal using 
Brain Extraction Tool [39], and spatial smoothing using Gaussian 
profile filter of full-width-half-maximum (FWHM) 5 mm), and 
coregistered to the corresponding anatomical MRI data. SPM analysis 
was performed with FSL tools [40]. fMRI data were preprocessed 
with motion correction using MCFLIRT [41], non-brain removal 
using Brain Extraction Tool [39], spatial smoothing with Gaussian 
profile filter (FWHM=5 mm), and high-pass temporal filtering with 
Gaussian-weighted running line detrending (cutoff=70 s). fMRI 
images were co-registered to their structural MRI with a 7 Degrees-of-
Freedom (DOF) linear transformation, followed by alignment to the 
MNI brain template using a 12 DOF linear fit. Since there are several 
conditions in the attention task of each study and fMRI SPM analysis 
separates the conditions while PET analysis not, the activations under 
separate conditions were combined in the SPM of fMRI in order to 
better match the SPM of PET images.

The Regions of Interests (ROIs), such as the caudate and thalamus, 
were traced on Anterior–Posterior Commissure (ACPC) positioned 
MRI. Brodmann Areas (BAs) in the frontal (BAs 9,11, 46, 47) and 
temporal (BAs 21, 22, 38) cortices, and anterior cingulate cortex (ACC) 
(BAs 24, 25, 32) were identified with Brodmann area analysis program 

A. Regions of hypometabolism.
Region BA MNI coordinates 

(x, y, z)
T Cluster size 

(voxels)
(L) Dorsolateral prefrontal 
cortex

9 -18  44  40 3.10 45

(R) Orbitofrontal cortex 11 0  28  -14 2.94 44
(R)   Dorsolateral prefrontal 
cortex

46 44  46  18 3.21 327

(R) Orbitofrontal cortex 47 38  24   2 3.27 122
(L) Middle temporal gyrus 21 -68  -26  -16 2.88 816
(R) Superior temporal gyrus 22 64  -14  -8 3.21 852
(L) Superior temporal gyrus 38 -40  20  -20 3.21 697
(R) Anterior cingulate 24 8   16   36 2.83 1321
        Subgenual area 25 14   12  -16 2.28 12
(R) Anterior cingulate 32 8   20  42 3.92 1321
(R) Caudate 14   12  -16 2.28 12
(L) Thalamus  -4   -16   4 1.97 8
B. Regions reduced hemodynamic response.
Region BA MNI coordinates 

(x, y, z)
Z Cluster size 

(voxels)
(R) Dorsolateral prefrontal 
cortex

9 10  44  38 2.88 358

(R) Orbitofrontal cortex 11 14  30  -4 3.09 31
(R) Dorsolateral prefrontal 
cortex

46 46  50  8 2.49 21

(R) Orbitofrontal cortex 47 40  24  -8 2.82 1727
(R) Middle temporal gyrus 21 52  -30  -8 2.77 1102
(L) Superior temporal gyrus 22 -50  -48  18 2.66 882
(R) Superior temporal gyrus 38  44  20  -12 2.71 1727
(R) Anterior cingulate 24 6   20  28 2.44 126
(R) Subgenual area 25 8  16  -6 2.60 27
(R) Anterior cingulate 32 6  20  42 2.77 358
(R) Caudate 10   0  14 2.66 1727
(L) Thalamus -6  -6  10 2.82 1256

Significant T or Z values (p<0.01) are in bold font
Table 1: Regions of hypometabolism or reduced hemodynamic response in 
schizophrenia patients compared with controls.

Table 1 [35].

et al. 2006 [38]). Briefly, there were 4 main stimuli or conditions in this 
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developed in the NeuroScience PET Laboratory at the Mount Sinai 
School of Medicine. Details of the Brodmann area analysis approach 
were described [42,43], hemodynamic response curves were extracted 
from the frontal and temporal cortex, anterior cingulate, caudate and 
thalamus. Area under the curve (AUC) was calculated for each region 
(in each hemisphere, and/or for each tissue type) in each condition 
with the Root Mean Square (RMS) approach. The calculated AUC 
values were correlated with rGMR obtained from the PET image and 
the maximum correlation in each brain region (across hemispheres, 
tissue types and conditions) is considered as the correlation between 
glucose metabolism and hemodynamic response for that region. 

Results
The spatial patterns of the group SPM differences (Figure 1) 

are different, however, both rGMR and hemodynamic response are 
significantly (p<0.01) lower in patients than controls in regions, such 
as the frontal (BAs 9, 11, 46, 47) and temporal (BAs 21, 22, 38) cortices, 
and the ACC (BAs 24, 25, 32) (Table 1). 

In addition, when considering all the subjects of this study for 
the correlation analysis, rGMR and hemodynamic response are 
significantly correlated in the frontal cortex (BAs 11, 47), temporal 
cortex (BAs 21, 22, 38), ACC (BAs 24, 25, 32), caudate and thalamus 
(Table 2). Further, as observed in our previous auditory attention study 
[34], the correlations between rGMR and hemodynamic response of 
patients in different regions are different from those of controls (Table 2).

Discussion
In this study, we investigated the correlation between rGMR 

and hemodynamic response during visual attentional performance 
in schizophrenia and found that although there were differences in 
the spatial patterns of the SPMs between rGMR and hemodynamic 
response, rGMR and hemodynamic response were significantly 
correlated in the frontal cortex (e.g. BA 11), temporal cortex (e.g. BA 
21), ACC (e.g. BA 25), caudate and thalamus for all the subjects; and 
the correlation patterns of the patients were different from those of 

controls. These results are consistent with the findings in our previous 
study during auditory attention performance [34].

Correlations between rGMR and hemodynamic responses

The SPMs of PET and fMRI images in this study demonstrated that 
patients had less hemodynamic responses and glucose metabolism 
in the fronto-temporal cortical regions than controls in response 
to the attention task. Such hypometabolism and low hemodynamic 
responses in schizophrenia patients in the frontal regions is consistent 
with the findings in PET studies [1,3,10,11] and fMRI studies [12,13] 
during tasks. The fronto-temporal hypometabolism and reduced 
hemodynamic responses found in this study revealed the functional 
deficits in the fronto-temporal regions in schizophrenia during 
attentional performance. Factors such as frontal-temporal gray matter 
volume loss [2], white matter abnormalities in the frontal and temporal 
lobe [44], altered dopaminergic and glutamatergic neurotransmission 
and disturbed cognitive processing in these regions may shed light on 
the mechanisms underlying such functional deficits [45].

Compared with spatial congruence of the activations between 
oxygen metabolism (O15 water PET) and hemodynamic response 
(fMRI) [29,30,46], the spatial patterns in group SPMs of glucose 
metabolism and hemodynamic response are different (Figure 1), 
which indicates low spatial congruence. Such low spatial congruence 
in group spatial patterns may be due to the lack of baseline images 
(i.e., images taken at resting-state) in the FDG-PET data of this study 
(while the fMRI data, including both the baseline and activation 
images). Different inter-subject variations in PET and fMRI data may 
also contribute to the different spatial patterns of PET and fMRI SPMs. 
In an fMRI validation study using FDG-PET with both baseline and 
activation images, it was found that spatial congruence between PET 
and fMRI was relatively high for individual patients with mass lesion 
(such as tumor) in the central region of the brain, while the inter-
subject variations were also high [47]. In addition, the PET analysis 
results of this study reflect the end effects of several visual stimulation 
conditions, while fMRI analysis results reflect the combined effects 
of each single condition. Such difference may also lead to low spatial 
congruence between PET and fMRI in this study.

Although the rGMR and hemodynamic response are correlated 
in various brain regions, the signs and values of the correlations 
vary from one region to another. In addition, the correlations vary 
according to the tissue type (gray matter or white matter) of the ROI, 
the hemisphere of the ROI and the task performed (including different 
conditions of the task) (Table 2). Positive correlations reflect positive 
coupling of rGMR and flow (i.e. when CBF is increased in an ROI in 
a subject sample, rGMR also increases in the ROI of the sample). In 
contrast, negative correlations may reflect the opposite directions in 
which CBF and rGMR change. 

It was found that oxygen metabolism was increased as brain 
activation lasted [48], and that rGMR was increased initially and 
decreased as stimulation continued, and there were matched changes 
in the blood flow and glucose utilization during brain stimulation 
[49]. MRS studies suggested that glycolysis is transient followed by 
an increase in oxygen utilization [50-52]. The correlations between 
glucose metabolism and blood flow might be explained by the 
observations of the matched changes in glucose utilization and blood 
flow over continuous brain stimulation, which is consistent with 
the hypothesis of glycolytically related blood flow regulation [49]. 
Further, a decrease in glycolysis with continuing visual stimulation 
may be associated with a decrease in the blood flow response through 
NADH/NAD+-related mechanisms [49].

 

Figure 1: (A) SPM (T-map) of Glucose Metabolism (Patients-Controls). (B) 
SPM (Z-map) of Hemodynamic Response (Patients-Controls).
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Different patterns of rGMR-flow correlations in patients and 
controls

The results of this study indicate that schizophrenia patients 
have different patterns from those of controls in the correlations of 
various regions between rGMR and hemodynamic responses (Table 
2). This might be due to rGMR-flow uncoupling in regions, such as 
BAs 25 in patients with schizophrenia, but relatively matched glucose 
metabolism-flow coupling in regions, such as BA 25 in healthy 
controls. The reason for such different correlation patterns in patients 
and controls is unclear. Nevertheless, rGMR-flow uncoupling is 
common to a number of pathological disorders, such as brain trauma 
and epilepsy [53-55]. In addition, functional changes on PET, SPECT 
and fMRI in depressed patients include altered cerebral blood flow 
and metabolism in the pre-frontal cortex, ACC, caudate nucleus, 
amygdala and thalamus, suggesting abnormal interactions in several 
brain regions [53]. The increase in glucose utilization following 
activations caused by visual, auditory, olfactory, somatosensory 
or motor stimulations has been revealed in the pertinent brain 
structures [56]. Further, flow-metabolism uncoupling was found in 
traumatic brain injury (TBI) [54], and the pattern of flow-metabolism 
uncoupling obtained in TBI was similar to that in experimental head 
injury [57] and cerebral infarction [54,58,59]

Methodological issues

In this research, the correlation between glucose metabolism and 
cerebral blood flow was assessed with PET and fMRI, using global 
SPM analysis and local correlation analysis at each ROI. 

As mentioned previously, one limitation of this study is that since 
PET images were acquired after the task was performed, PET analysis 
results reflect the end effects of all stimulation conditions, but fMRI 
analysis results reflect the combined effects of separate stimulation 
conditions, and thus the results of the correlation analysis may not 
fully reveal the true metabolism-flow relationship. An fMRI study 
with a task of only one visual stimulus may improve the PET and 
fMRI spacial congruence and correlation, and could be explored in 
our future studies. 

Another limitation of this study is that we used AUC as an index 
for BOLD signal to calculate the correlations with rGMR for an 
ROI and used RMS approach to compute AUC (which was averaged 
across the voxels of the ROI). When the activations in the ROI are 
heterogeneous across the voxels, such averaged AUC approach might 
not accurately reflect the real changes of the BOLD signal within an 
ROI. An alternative approach is to obtain the Z-scores from SPM 
analysis and compare the local maxima Z-scores of the activated 
clusters in the ROI between rGMR and hemodynamic response. Such 
approach could be employed in the future, in order to better reveal the 
true metabolism-flow relationship.

Conclusion
In summary, the findings of this study are: (1) rGMR and 

hemodynamic responses are significantly correlated for all subjects in 
the frontal cortex (e.g. BA 11), temporal cortex (e.g. BA 21), anterior 
cingulate (e.g. BA 25), caudate and thalamus; (2) Schizophrenia 
patients have different patterns from those of controls in the 
correlations between rGMR and hemodynamic responses, which may 
suggest altered metabolism and blood flow processes underlying the 
attention deficits in schizophrenia. Since altered metabolism-flow 
processes often precede the emergence of major symptoms, the study 
of metabolism-flow relationship may be useful for the early diagnosis 
of schizophrenia. 
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