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Introduction
Imaging physics as a developed field of study provide different

diagnosis tools for different researchers such as clinicians and
biologists. Popular imaging modalities are X-ray, Computed
Tomography (CT) and Magnetic Resonance Imaging (MRI), 3-D
ultrasound and whole slide microscopy images which widely used in
clinical routine for different aims. For example, MRI imaging is a
common and powerful approach to represent the soft tissues of the
human body, which can be used for three-dimensional visualization of
the body organs [1]. Extraction of target tissues, tumors and lesions
like MS are the preliminary step in many medical procedures. For
instance, extraction of three main cerebral tissues such as white matter,
gray matter and cerebrospinal fluid is an important step for different
diagnosis and treatment procedures such as 3D-brain visualization,
heterotopia, and brain atrophy [2,3]. Currently, computerized analysis
of image data has become one of the main subjects in diagnostic
procedures. This important field of research area is known as
computer-aided diagnosis (CAD). These methods mainly provide a
description of pathologic tissues for radiologists, biologist and, so forth
for detection and diagnosis of normal and pathological tissues [4].

Textures are one of the vital features in image processing and
especially biomedical image analysis. Although, textures look intuitive,
so far a single unifying of them have not been suggested, which could
present a comprehensive definition for textures. Therefore, researchers
proposed different methods for extraction of texture features, which
each group of features have their positive and negative properties as
well. Textures as an important property in medical images have
attracted much attention in CAD systems [5]. Texture analysis
methods can be divided in different sub-categories. In this paper we
present some of the most important branches of texture analysis
methods which find a proper application in medical image analysis.

Statistical Methods
Statistical features consist of different categories such as first-order,

second-order statistical methods, Local Binary Pattern (LBP) methods
and so forth. These features especially LBP have been the center of
attention because of obtaining promising results which they recently
have achieved in different applications with changing in level of noises,
illumination, sizes of textures. As medical images are affected by many
artifacts during imaging providing an invariant group of features is
crucial in these applications. In the following subsections we describe
some of the important methods of the statistical approaches for texture
analysis.

First order and second order methods
The first order statistical features include the features which are

extracted from the statistical property of image histogram including
mean, variance, standard deviation and etc. Although these features
are very straightforward and simple, they provide a good description of
texture in the image. Moreover, there are three main sub-categories
which have been proposed for second-order statistical features
including Spatial Grey-level Difference Method based on the analysis
of co-occurrence matrix [6], the Grey-Level Difference and the Grey-
Level Run Method. Statistical features have widely been used for
extraction of relevant features in CAD systems [7].

LBP Methods
The other important category of statistical methods is Local Binary

Pattern (LBP) based approaches [8]. In [9] a new LBP method has
been proposed which tries to incorporate spectral features into LBP
method. Therefore, LBP will be more robust and powerful to invariant
texture analysis in this case. Different types of this method have been
proposed for texture analysis of biomedical applications and find a
great attention in CAD systems [10,11].

Model Based Approaches
Some researchers have tried to model contextual, textural and

spatial properties of images and then texture features can be extracted
by incorporating these features during image analysis. The main
categories of model based methods which have been considered for
this aim are Markov models. These methods have different types
including the Gaussian Markov random fields and Gibbs random
fields. In fact, Markov random field method is an optimization method
which defines an energy function on a label field and the goal is to
minimize the energy function. This energy function must be defined in
a way that textural features and also spatial relationships of
neighbourhood pixels to be considered. Methods based on auto-
regressive and Hidden Markov Model have been proposed for texture
classification and have had good results in this field [12].

Filter Banks Based Methods
The other important groups of texture analysis methods which have

been considered in biomedical image analysis applications are filter
bank based methods [13]. The filter bank methods consist of three
main sub-categories including the frequency, spatial and spatial-
frequency approaches. Frequency filter banks mainly use Fourier
transform and discrete cosine transform for extraction of features and
try to extract the texture feature in frequency domain. On the other
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hand, spatial methods just apply filter banks on spatial domain of
textures and then extract the texture features from the image.

Spatial filter banks and frequency analysis based approaches
Spatial filter banks have long history for biomedical feature

extraction. These methods are containing of two important groups
such as smoothing filters like Gaussian filters and sharpening filters
like Laplacian and Sobel filters. However, recently, different authors
inspired from the visual cortex, try to use a bank of oriented spatial
filters in different scales for modelling of texture images [14,15].

Spatial-frequency based methods
Frequency analysis just decomposes each signal into frequency

components of the signal and completely ignores the spatial domain.
Moreover, spatial filters just consider the spatial information; therefore,
these two groups of methods intrinsically have limitation for analysis
of textures. These shortcomings could be solved if both the spatial and
spectral information considered because appropriate analysis of real
world images needs both information. Spatial-frequency methods
include a range of filter banks which wavelet transform and Gabor
filter are among the most important ones. In most feature based
methods such as pyramid-structured wavelet transforms and tree-
structured wavelet transform (TSWT), texture features are extracted by
some features in different resolution and channels. In [16,17], two way
for combination of DWT method with spatial filter banks is proposed
and try to incorporate spectral information in multi-resolution
analysis methods like DWT for extraction of invariant features. DWT
based methods are very important for biomedical image analysis
[18,19]. The other important multi resolution based methods are
Gabor filters and Gabor wavelets. According to the ability of Gabor
filters for invariant texture analysis these methods have provided good
results in biomedical image analysis applications [20].

Conclusion
In this paper, a review on different groups of texture methods which

find an application in biomedical image analysis and CAD systems was
presented. Texture analysis is an active research area of study and many
researchers in different fields (including the medical image analysis)
work on this topic. This paper tried to summarize some of the original
methods which have been proposed in computer vision and image
processing community for texture analysis and some of their
biomedical applications have been considered.
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