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Abstract

Introduction: Alcohol continues to be one of the most frequently abused drugs in the world. While low levels of
alcohol consumption may have health benefits, chronic abuse of alcohol deleteriously impacts most body systems
and contributes to or exacerbates over sixty disease conditions. The mechanisms of organ and tissue damage in
response to alcohol abuse include altered metabolic pathways, accumulation of reactive oxygen species and
depressed immune function. Mast cells are multi-functional cells that have been classically described for their role in
hypersensitivity reactions. More recently, roles for these cells have been elucidated in innate immunity and tissue
remodeling. Mast cells perform these functions primarily through the secretion of a plethora of mediators that include
histamine, heparin, serine proteases, cytokines and others. The specific factors that are produced and secreted at
any time by mast cells depend in part on the tissue microenvironment providing the basis for extensive plasticity of
these cells. Recent studies are beginning to define the role of mast cells in mediating the deleterious effects of
chronic alcohol abuse. For instance, alcohol-induced damage to the gastrointestinal mucosa is at least in part
mediated by activation of mast cells. Pharmacological inhibition of mast cell degranulation attenuates the increased
permeability of the gastrointestinal epithelium associated with alcohol abuse.

Conclusion: Mast cells and their secretory products have been implicated in promoting a number of disease
conditions. Recent studies have suggested an important role for these cells in alcohol-induced tissue remodeling.
These cells and their specific secretory mediators may provide novel therapeutic targets in prevention or reversal of
alcohol-induced tissue damage.
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Introduction
Despite the clear health ramifications of chronic alcohol abuse, this

continues to be one of the most frequently abused chemicals in the
world. Approximately fourteen million Americans chronically abuse
alcohol (National Institute of Alcohol Abuse and Alcoholism) and
excessive alcohol use is the third leading cause of preventable death in
the United States [1]. Alcohol abuse affects most organ systems and
causes or exacerbates over sixty diseases including heart disease,
Alzheimer’s, stroke, liver disease, diabetes mellitus and others [2-6].
The pathological effects of chronic alcohol abuse involve a number of
mechanisms including altered metabolic, immunological, signaling
and inflammatory pathways. Studies in several organ systems have
illustrated that chronic consumption of high levels of alcohol alters
immune and inflammatory responses including impairment of
antimicrobial and antiviral immunity. Excessive consumption of
alcohol is associated with increased incidence of pneumonia,
tuberculosis, hepatitis C infection, enhanced susceptibility to HIV and
increased propensity for some tumors [7-9]. These effects have been
attributed to suppression of immune function by alcohol abuse. Many
questions remain regarding the cellular and molecular mechanisms of
these effects; however, substantial advances have recently been made
in this area. Exposure to ethanol affects cytokine production by
various immune cells [10-12]. Among the cells shown to be affected by

chronic alcohol exposure, mast cells fill a particularly important role in
innate immunity and deleterious tissue remodeling.

Mast cells
Mast cells are bone marrow-derived effector cells found abundantly

in connective tissues situated at the interface of the body and the
external environment including the integument and mucous
membranes [13,14]. They are also found in connective tissue
components of many organs, particularly in association with blood
vessels, nerves and mucous glands [15]. Mast cells were originally
described based upon their unique histological staining of large
cytoplasmic granules [16]. The initial view that these cells were
involved in nutrition of surrounding tissue gradually evolved as it was
discovered that mast cell granules contain histamine and a functional
relationship between histamine and anaphylaxis was developed
[17,18]. These and other discoveries set the stage for the classical view
of mast cells functioning in the early phases of immediate
hypersensitivity reactions. In this process, antigens react with
immunoglobulin E bound to the surface of mast cells promoting
degranulation and release of mast cell mediators that are responsible
for a number of the features typically associated with allergies
including mucous secretion, bronchoconstriction and increased
vascular permeability [19,20].

As research into mast cell function has continued, it has become
increasingly clear that these cells are multifunctional and their specific
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roles are likely regulated by the tissue microenvironment. Mast cells
are involved in a variety of physiological processes including tissue
repair, wound healing, angiogenesis and likely adaptive immunity
[21]. Mast cells also play roles in defense against parasitic and bacterial
infections [22]. More recently, dysregulation of mast cells and their
secretory mediators has been implicated in playing a causal role in
deleterious tissue remodeling, autoimmune disorders and cancers [23].

Mast cells produce and secrete a variety of biochemical mediators.
Indeed, the large array of mediators produced by mast cells
contributes to their functional plasticity [24]. These mediators are
subdivided into three general groups: 1) preformed mediators, 2)
neoformed or lipid mediators and 3) newly synthesized mediators.
Preformed mediators are stored in cytoplasmic granules which are
released upon mast cell activation (degranulation). Mast cells store a
wide variety of preformed mediators including histamine, heparin,
proteases and select cytokines such as tumor necrosis factor-α [21].
The release of preformed mediators typically occurs within seconds to
minutes of stimulation providing an advantage for the involvement of
these cells in immune surveillance [25]. One of the first and most
extensively studied mast cell preformed mediators is histamine [18].
Histamine is a biogenic amine with diverse functions associated with
allergic reactions including vasodilation, increased capillary
permeability and bronchoconstriction [26-29]. More recent studies
have described novel roles for histamine including involvement in
autoimmune diseases and regulation of dendritic cell function [30].
Mast cell granules also contain active enzymes of the mast cell protease
family, which includes chymases, tryptases and carboxypeptidease A
[31]. Mast cells can be stimulated to degranulate by cross-linking of
immunoglobulin E receptors, mechanical force, electrical activity and
by various chemical activators [32]. The neoformed mediators are of
the eicosanoid family and are synthesized as required from the fatty
acids of membrane phospholipids [33,34]. Two families of enzymes
catalyze fatty acid oxygenation to produce eicosanoids from
arachidonic acid - cyclooxygenases and lipooxygenases. The mast cell-
produced eicosinoids, prostaglandins and leukotrienes, have a variety
of functions including stimulation of leukocyte migration, smooth
muscle contraction, mucus production and others [15,35,36].
Members of the final group of mediators are newly synthesized when
the mast cell is activated and are regulated in a stimulus-specific
manner. These include diverse cytokines, chemokines and growth
factors. Unlike release of preformed mediators during degranulation,
production of newly synthesized mediators is a slower process more in
line with the responses seen in other inflammatory and immune cells.

Mast cells exhibit extensive plasticity and heterogeneity in the
production and release of mediators that directly reflect their
microenvironment and the stimulus encountered. Multiple
phenotypes of mast cells have been described based upon their
localization and array of biochemical mediators produced. In rodents,
two subtypes have been described that vary in the proteases produced.
In mice, mucosal mast cells typically reside in the mucosa of the lung
and gastrointestinal tract and produce mouse mast cell proteases 1 and
2. In contrast, connective tissue mast cells are located in intestinal
submucosa, peritoneum and skin and are characterized by the
production of mouse mast cell proteases 4,5 and 6 [37,38]. In humans,
mature mast cells have also been divided into two subsets based upon
their protease content. The mast cell tryptase (MCT) subset store
tryptases in their granules while the mast cell tryptase/chymase
(MCTC) subset store tryptases, chymases and carboxypeptidases in
their granules [38-40]. While these characterizations provide a simple
scheme for classifying mast cells, it is clear that these phenotypes can

vary between tissues or even between cells in the same tissue. This is
likely modulated by the biochemical milieu of the local environment as
particular cytokines have been shown to promote the differentiation of
specific mast cell phenotypes [15,41,42].

Roles for mast cells in the response to alcohol
While mast cells have begun to receive more attention regarding

their role in normal tissue physiology and in diverse disease
conditions, very few studies have focused on the contribution of these
cells to alcohol-induced tissue damage. However, accumulating
evidence suggests a role for these cells in pathogenesis associated with
alcohol abuse. These studies will be summarized below.

Ethanol, mast cells and asthma
While controversial for some time, there is now compelling

evidence that mast cells play a substantial causative role in the
consequences of asthma [43]. Mast cells secrete mediators that can
stimulate mucus secretion, bronchoconstriction and mucosal edema,
which are all features of asthma. Bronchial mast cells exhibit features
of ongoing activation in patients with asthma [44]. This is associated
with alterations in the microlocalization of mast cells within
respiratory tissues [45]. Most of the mast cells in the airway smooth
muscle are characterized by expression of both tryptase and chymase.
Experimental studies have illustrated that delivery of exogenous
tryptase induces bronchoconstriction in dog and sheep models [46].
This response is blocked by anti-histamine suggesting that the tryptase
effect on bronchoconstriction is mediated by histamine. Thus, mast
cell activation appears to be an important mediator of asthma. Indeed,
prostaglandin 2 has a protective effect against asthma and this may be
in part due to prevention of mast cell activation [47]. Despite these
advances, the relationship of mast cells to alcohol-induced respiratory
conditions has not been extensively investigated.

The incidences of asthma and binge drinking are on the rise,
particularly in young adults [48]; however, their interactions have
remained relatively unexplored. A number of clinical studies have
illustrated that alcohol use exacerbates asthmatic symptoms [49,50]. A
recent study in allergen-sensitized mice illustrated that ethanol
treatment induced mast cell degranulation and exacerbated the
symptoms of asthma including airway constriction and mucous
production [48]. Similarly, acetaldehyde, the first metabolite of
ethanol, induces degranulation and histamine release from airway
mast cells resulting in constriction of bronchi [51,52]. To date,
perturbation studies have not been carried out to conclusively define
the functional role of mast cells and their mediators in the effects of
alcohol on asthmatic conditions.

Ethanol-induced gastric damage
Exposure of the gastrointestinal tract to ethanol results in vascular

leakage in mucosal capillaries and postcapillary venules [53]. This
contributes to hemorrhage and the development of necrotic lesions in
the gastric wall [54]. Several studies have illustrated a correlation
between the number of mast cells and the appearance of gastric lesions
[55,56]. Compounds that promote mast cell degranulation (compound
48/80, for instance), induce gastric damage that appears very similar to
the damage elicited by ethanol exposure [57]. A hallmark of the mast
cell product histamine is its effects on the vasculature and induction of
vascular leakage. The mechanism of this effect is the production of
small gaps between endothelial cells in capillaries and small venules
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[58,59]. Exposure to ethanol elicits similar effects on mucosal blood
vessels as histamine itself, suggesting a functional role for mast cells in
the response to ethanol [60]. Administration of mast cell stabilizers
such as sodium chromoglycate and ketotifen prevent ethanol-induced
lesion formation in vivo and in tissue culture models [53,61-63].
Furthermore, application of ketotifen prevents ethanol-induced
alterations in vascular structure and function [53]. More recent studies
have illustrated that epidermal growth factor has protective effects
from alcohol-induced gastric damage [64]. Treatment with epidermal
growth factor prior to ethanol exposure results in decreased gastric
ulcer content and diminished release of histamine. The effects of
epidermal growth factor appear to emanate in part from its ability to
stabilize mast cells in the gastrointestinal tract.

Exposure of the gastrointestinal tract to alcohol also increases
permeability of the mucosal epithelium [65,66]. This appears to be due
to the metabolism of ethanol to acetaldehyde as ethanol itself has little
direct effect on the epithelium. Acetaldehyde has been demonstrated
to disrupt epithelial tight junctions [67]. Disruption of the epithelial
barrier results in increased blood endotoxin levels, which in turn has
substantial effects on other organs, particularly the liver. Endotoxin is
a potent activator of liver Kupffer cells and appears to be a prerequisite
for cirrhosis [68,69]. Mast cells themselves can induce disruption of
the epithelial barrier suggesting that they may be involved in ethanol-
induced alterations in this barrier [70,71]. Studies have illustrated that
gastrointestinal bacteria are able to metabolize ethanol into
acetaldehyde and inhibition of this with antibiotics reduces the
disruption of the epithelial barrier by alcohol [72]. In addition,
stabilization of mast cells with doxantrazole reduces the disruption of
epithelial barrier function by ethanol exposure. These studies have
established a paradigm whereby ethanol is metabolized by endogenous
gut bacteria and epithelial function is reduced in part by activation of
mucosal mast cells by acetaldehyde.

Alcohol, mast cells and cancer
While the impact of alcohol abuse on a number of diseases has been

investigated, its impact on cancer has not been as widely appreciated.
Chronic alcohol use, in fact, promotes several epithelial cancers
including esophageal, liver, breast and colorectal cancers [73-75] and
results in poor prognosis of these. The underlying mechanisms
mediating the effects of ethanol on cancer susceptibility and
progression are not well understood but may include the formation of
DNA adducts, lipid peroxidation, oxidative stress, inflammation or
other processes. In the colon, mast cells participate in innate immunity
to protect against microbial pathogens and parasites and to modulate
the permeability of the gut epithelium. However, mast cells also
respond to oncogenic signals in ways that appear to contribute to
cancer progression [76-78]. Recent studies illustrated that chronic
alcohol consumption induces an increase in intestinal polyps in the
APC min/+ mouse model [79]. There was a corresponding increase in
the number of mast cells in the stroma of polyps in the ethanol-treated
animals including both tryptase-positive and chymase-positive cells.
The functional significance of these alterations remain to be
determined.

Mast cells and alcoholic cardiomyopathy
Mast cells and their secretory products have been implicated in

mediating cardiac remodeling associated with a number of
pathological conditions including hypertension, myocarditis,
myocardial infarction and heart transplantation [80-84]. Increased

cardiovascular load as occurs in hypertension results in myocardial
hypertrophy and fibrosis. Concurrent with these changes is an increase
in mast cell density in the myocardium [85]. Studies in which mast
cells were stabilized with nedocromil illustrated a causal role for mast
cells in myocardial remodeling and fibrosis of spontaneously
hypertensive rats [84]. In these studies, mast cell stabilization also
normalized the cytokine expression profiles associated with chronic
hypertension. Mast cells have also been implicated in damage resulting
from myocardial ischemia/reperfusion. In response to myocardial
ischemia/reperfusion, mast cells release renin, which activates the local
renin-angiotensin system [86,87]. This culminates in the local
formation of angiotensin II, increased sympathetic activity and
arrhythmias [87,88]. Interestingly, ischemic preconditioning inhibits
subsequent ischemia/reperfusion-induced mast cell release of renin
and activation of the local renin-angiotensin system [89]. Collectively
these studies illustrate an important role for mast cells in diverse
cardiovascular diseases and suggest these cells may be an important
therapeutic target.

Figure 1: This graphically illustrates mast cell density in the hearts
of mice on diets with or without ethanol. Young adult mice were
placed on liquid diets containing no ethanol (black bars) or 4%
ethanol (gray bars) for the indicated duration. After the appropriate
duration, animals were euthanized, hearts fixed and histological
sections obtained. Sections were stained with Toluidine Blue and
mast cells counted using a light microscope. Statistical significance
was determined using a Student’s t test (*<0.05; n=5 to 7 mice per
group).

Chronic alcohol exposure results in a form of heart disease termed
alcoholic cardiomyopathy. Approximately thirty percent of alcoholics
will develop this disorder, making it one of the predominant forms of
nonischemic heart disease [90-92]. This disorder is characterized by
myocyte damage, contractile dysfunction, myocardial fibrosis and
eventually heart failure [93]. The role of mast cells has not been
investigated in this disease. We conducted studies in a mouse model to
evaluate potential alterations in myocardial mast cells in response to
chronic alcohol consumption. In these studies, mice were placed on a
liquid diet containing 4% ethanol [94]. Control mice were placed on
an isocaloric liquid diet without ethanol. Previous studies have
illustrated that animals on the ethanol-containing diet develop
myocardial hypertrophy and fibrosis within two weeks [93]. Tissue
sections of hearts were obtained from mice after specific durations on
the control or ethanol-containing diets and stained with toluidine blue
to identify mast cells. These studies illustrated that mast cell density is
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rapidly increased in the hearts of mice on the alcohol-containing diet
(Figure 1). Further studies will be required to determine the functional
role of mast cell activation in the progression of alcohol-induced
myocardial remodeling; however, it is tempting to speculate that
activation of these cells contributes to the progression of alcoholic
cardiomyopathy similar to other cardiovascular conditions.

Cellular and molecular mechanisms of the alcohol effects
While it is becoming increasingly clear that mast cells contribute to

the progression of alcohol-induced pathology; many questions remain
regarding the molecular mechanisms of their effects. Alcohol exposure
may impact a number of parameters of mast cell physiology including
differentiation, activation/degranulation, gene expression,
proliferation, migration and other processes. The response of mast
cells and other inflammatory cells to alcohol will likely depend upon
the local microenvironment. To date, few studies have focused on the
direct effects of alcohol on mast cells.

As mentioned previously, chronic alcohol abuse impairs the
immune response resulting in increased susceptibility of alcoholics to
infectious diseases. Several studies have illustrated that alcohol
treatment of animals inhibits expression of proinflammatory cytokines
by macrophages and other cell types [7,95]. Pretreatment of isolated
bone marrow-derived mast cells with ethanol in vitro results in
attenuated IgE-mediated degranulation [12]. Similarly, long-term
exposure to ethanol in an inhalation model, results in diminished mast
cell degranulation following treatment with compound 48/80 [96].
These studies also illustrated that treatment of the HMC-1 human
mast cell line with ethanol, inhibits tumor necrosis-alpha (TNF-α) and
interleukin-8 production. In contrast to this, other studies have
illustrated that treatment of mast cells with low doses of ethanol or
acetaldehyde results in increased expression of cytokines including
TNF-α, transforming growth factor-beta and interleukin-6 [97]. These
effects were attenuated by pretreatment of the cells with mitogen-
activated protein kinase (MAPK) inhibitors. The differences in these
results may reflect a dose-dependent response of mast cells to ethanol
and contribute to a potential explanation for the beneficial effects of
low doses of alcohol consumption versus harmful effects of alcohol
abuse.

Mast cells produce and store exceptionally high levels of serine
proteases collectively termed mast cell proteases. These proteases
include tryptase, chymase and carboxypeptidase A. Mast cell proteases
may account for up to 25% of the total protein content in mast cells
[98]. A diverse array of functions has been attributed to these enzymes
including roles in the clearance of parasites and bacteria, cleavage of
extracellular matrix components, activation of matrix metalloproteases
and others. Studies have illustrated that relatively high doses of
acetaldehyde stimulates the production of chymase by mast cells [99].
We have performed experiments to evaluate the effects of long-term (1
week) exposure of the rat basophil/ mast cell line (RBL 2H3 cells) on
mast cell protease expression. Following culture for 1 week in ethanol,
the expression of mRNAs for mast cell proteases was evaluated. Mast
cell protease 4, also known as β chymase, mRNA levels were
significantly increased in a dose-dependent manner in these
experiments (Figure 2). The mechanisms of this response and the
functional significance of enhanced chymase production in alcohol-
induced tissue remodeling remain to be determined.

Figure 2: This graphically illustrates the relative expression of mast
cell protease-4 (MCPT-4) by RBL 2H3 cells following treatment for
seven days with the indicated ethanol concentration. Cells were
treated continually with the respective ethanol concentration.
Medium was changed daily during the treatment period. MCPT-4
expression was assayed by semiquantitative polymerase chain
reaction. Expression of MCPT-4 was normalized to acidic
ribosomal binding protein and the experimental treatments are
expressed relative to the no ethanol control. Significance was
determined by one way Anova comparison to the no ethanol
control (*<0.05; n=3 independent cultures).

Mast cells are generated from bone marrow-derived precursors and
mature in response to c-kit ligand, stem cell factor and the cytokine/
growth factor milieu of the tissue. Increased numbers of mast cells in
tissues can arise by proliferation of resident mast cells or recruitment
of additional cells. Few studies have examined the effects of alcohol on
either of these aspects of mast cell biology. Treatment of bone
marrow-derived mast cells and the human mast cell line, HMC-1, with
ethanol inhibits proliferation [12,100]. This was not accomplished by
treatment of mast cells with acetaldehyde suggesting that this is a
direct effect of ethanol on these cells [100]. Due to the effects of
alcohol abuse on neurological development, a number of studies have
evaluated the modulation of proliferation in the developing nervous
system by ethanol. Exposure to high doses of ethanol inhibits
proliferation of multiple cell types including glial cells [101,102],
dermal fibroblasts [103] and neural crest cells [104]. Studies with a
binge alcohol exposure model in adolescent rats illustrated an
alteration of cell cycle kinetics in hippocampal progenitor cells [105].
Mechanistic studies evaluating inhibition of hepatic cell proliferation
by ethanol have suggested dysfunction of iron metabolism as a
contributing factor [106]. In neural stem cells, inhibition of
proliferation appears to be dependent on alteration of extracellular
signal-regulated kinase and phopholipase D by ethanol exposure
[107]. In contrast to other cell types, ethanol exposure results in
enhanced cell growth and proliferation of human embryonic stem cell
lines [108]. Further studies are required to conclusively determine the
effects of alcohol on proliferation of mast cells and their progenitors
and to elucidate the mechanisms of these effects.

Ethanol exposure induces apoptosis of various cells including liver
Hep G2 cells, macrophages, embryonic neural crest cells and cardiac
myocytes [90,109,110]. Recent studies have also illustrated that
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treatment of human mast cells in vitro with ethanol decreases viability
of the cells [100]. This was true of both the HMC-1 cell line and
primary bone marrow-derived mast cells. Ethanol treatment promoted
apoptosis of mast cells, as determined by TUNEL staining and
activation of caspase-3. The fact that exposure to ethanol is thought to
decrease proliferation of mast cells and promote apoptosis appears
contradictory to the increase numbers of mast cells in tissues following
alcohol consumption. Other processes that would increase mast cell
number in tissues include enhanced migration of precursor cells or the
promotion of mast cell differentiation by alcohol.

As mentioned previously, chronic alcohol consumption results in
impaired immune function. Long-term ethanol exposure in an
inhalation model results in reduced neutrophil and eosinophil
migration [96]. Similarly, ethanol exposure reduces migratory capacity
of cutaneous dendritic cells [111] and natural killer cells [112]. In the
former studies, exposure to ethanol prevented the transition of the
dendritic cells to a migratory phenotype with concomitant changes in
gene expression that promote migration [113]. Other studies have
illustrated that ethanol exposure alters microtubule assembly, which
may impact migration, proliferation and other cellular processes [114].
In contrast to this, ethanol exposure appears to enhance the migratory
ability of some cancer cells. Recent studies have illustrated that
exposure to alcohol results in enhanced epithelial to mesenchymal
transition including increased expression of matrix metalloproteases
required for migration and metastasis [115]. Alcohol also has effects
on the tumor microenvironment including alterations in the
extracellular matrix that may enhance migration through the matrix
[116]. The effect of alcohol on migration of mast cells has not been
evaluated, but is an important aspect of mast cell-mediated responses
that needs to be explored.

Conclusions
Mast cells play substantial roles in a variety of disease processes.

Several recent studies have indicated a role for these cells in mediating
the deleterious effects of chronic alcohol abuse making mast cells an
intriguing therapeutic target. Ethanol or acetaldehyde treatment in
vivo and in vitro has been shown to impact a variety of parameters
important to mast cell function including gene expression,
differentiation, degranulation/secretion, migration, proliferation and
even survival. However, the molecular and cellular mechanisms
whereby mast cells affect alcohol-induced disease are not well
established. Further research in this area will be critical to
development of specific therapeutic approaches with few side effects.
Global inhibition of mast cell degranulation has been shown to
prevent or slow the progression of several pathological conditions;
however, this is likely to have significant detrimental effects as these
cells play important physiological roles. Identification of individual
factors involved in mast cell activation or secretory products of mast
cells involved in specific processes will provide more specific targets
for therapeutic purposes.
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