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Abstract
Inorganic compounds which include metals, minerals, and organometallic compounds are used as catalysts, 

pigments, coatings, surfactants, medicines, fuels and more. They often have high melting points and specific high 
or low electrical conductivity properties, which make them useful for specific purposes. The scope of the review 
focusses on the application of a few inorganic materials with special emphasis on their biological and biomaterials 
perspectives. 
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Introduction
Natural materials often consist of inorganic and organic hybrid 

distributed on the (macro) molecular or nano scale where the inorganic 
part provides mechanical strength and an overall structure while the 
organic part delivers bonding between the inorganic building blocks 
and/or the soft tissue [1]. The most accepted definition of biomaterials 
is employed by the American National Institute of Health that describes 
it as ‘‘any substance or combination of substances, other than drugs, 
synthetic or natural in origin, which can be used for any period of 
time, which augments or replaces partially or totally any tissue, organ 
or function of the body, in order to maintain or improve the quality 
of life of the individual”. The Williams Dictionary of Biomaterials 
defined biocompatibility as ‘‘ability of a material to perform with an 
appropriate host response in a specific situation”. The first biomaterials 
used by Egyptians and Roman where gold and ivory were employed 
for replacements of cranial defects. Based on the reaction of the tissue 
to the biomaterial, these are classified into three distinct categories: 
biotolerant, bioactive and bioinert materials [2].

Clay Materials
Clay minerals are members of the phyllosilicate or sheet silicates 

family (chlorite, serpentine, talc and the clay minerals) which form 
parallel sheets of silicates consisting of hydrated alumina–silicates. 
The basic building blocks of clay minerals are tetrahedral silicates and 
octahedral hydroxide sheets. The arrangement sheets give rise to various 
classes of clay minerals such as 1: 1 (e.g. kaolinite and serpentine) and 2: 
1 (e.g. smectite, chlorite and vermiculite) clay. 

Clay minerals are one of the oldest earth materials used for healing 
purposes in traditional medicine. Indigenous people around the world 
have been using clay minerals for curative and protective purposes. Clay 
minerals are usually either positively charged or negatively charged, 
which the main reason for their ion exchange capacity is. Layered 
double hydroxides (LDHs), also known as ‘‘anionic clays’’, composed of 
an anion located in the interlayer space that compensates for the deficit 
of negative charge in the brucite-like layers [3,4]. 

Layered silicates belonging to the clay smectite family 
(montmorillonites, saponites, etc.) or microfibrous clays (sepiolite 
and palygorskite) are currently being investigated to develop hybrid 
advanced materials useful for diverse purposes including environmental 
and biomedical applications [5-14] (Table 1).

Titanium 
Titanium is the 9th most abundant element in the earth’s crust; only 

oxygen, silicon, aluminum, iron, magnesium, calcium, sodium and 
potassium. The most common titanium-bearing minerals are ilmenite 
(FeTiO2), rutile (TiO2), anatase (TiO2), arizonite (Fe2TiO5), perovskite 
(CaTiO2), leucoxene (altered ilmenite) and sphene (CaTiSiO3) or titanite 
of these, only ilmenite, leucoxene, and rutile have significant commercial 
importance. About 65% of titanium is used in aerospace applications 
while rest 35% is divided among armour, automotive, consumer, 
industrial, medical and other applications [27]. The application of 
Titania nanotubes for energy and fuel applications is reported by many 
researchers [28-32]. Application of Titanium Dioxide nanoparticle as 
Environmental Sanitizing Agent was reported by Sujata and Jack [33].

The natural selection of titanium-based materials for implantation 
is due to the combination of its outstanding characteristics such as 
high strength, low density, high immunity to corrosion, enhanced 
biocompatibility, low modulus and high capacity to join with bone and 
other tissues. Titanium and its alloys received extensive attention in 
dental applications. Commercially pure Ti is the dominant material for 
dental implants and is used as an alternative to Ag-Pd-Au-Cu alloy not 
only because of its excellent properties but also due to the increasing 

Application References
Pharmaceuticals (Antacids, Gastrointestinal protectors, 
Antidihhoreatics, Antidiarrhoeaics, Osmotic oral laxatives) [15-18]

Cosmetics (Cosmetic creams, powders and emulsions, Bathroom 
salts, Deodorants) [4,15,19]

Biomaterial [3,20-22]
Biosensor [23-25]
Medical Devices [26]

Table 1: Application of clay materials.
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cost of palladium. Few other reported representative dental titanium 
alloys are Ti–6Al–7Nb, Ti–6Al–4V, Ti–13Cu–4.5Ni, etc. [34]. For hard 
tissue replacement, the low Young´s modulus of titanium and its alloys 
is an advantage because the low elastic modulus can result in smaller 
stress shielding compared to other implant materials, faster bone 
regeneration. Artificial bones, joint replacements and dental implants, 
titanium and titanium alloys are often used in cardiovascular implants 
[35,36]. The corrosion behavior of the uncoated and hydroxyapatite 
(HA) coated titanium (Ti) corrosion behavior in simulated body fluid 
was studied by [37]. Ovissipour et al. discussed about the possible 
impact of titania and other nanoparticles on aquatic organisms [38]. 
Nia et al. reported about the method validation and application for the 
determination of Ti from TiO2 Nanoparticles in Biological Materials by 
ICP-MS [39]. 

Mediaswanti et al. discussed about the bioactive porous titanium 
and porous titanium alloys with a variety of alloy components 
development as the solution to overcome stress shielding problems on 
dense titanium and for the improvement of biomechanical properties 
[40]. The synthesis, bio-characterization and antibacterial property 
of mesoporous silica nanospheres modified by titanium dioxide was 
studied by Cendrowski et al. The light activated antibacterial activity of 
the composite was studied on E. coli. The toxicity of the nanomaterial 
was further studied by quantifying the amount of lactate dehydrogenase 
released from mouse fibroblast cells L929 with LDH assay [41]. Murr 
et al. discussed about the a wide range of biocompatible, antibacterial 
and biofunctional implant devices with stress compatibility, cement less 
fixation by bone cell ingrowth with special emphasis on Ti-6Al-4V [42]. 
Sollazzo et al. synthesized highly porous titanium biomaterial induces 
osteoblastic bone marrow Stem Cells differentiation [43].

Silica
In nature, silica raw material is occurring in extensive range of 

mineral and includes unconsolidated sand and consolidated rock. 
Recently extraction of high purity silica from Amazonian sponges 
was reported by Barros et al. [44]. Ghosh and Bhattacherjee reported 
the extraction of nanosilica from rice husk [45]. Silica sand is most 
primary ingredient material in all glass industry. The range of chemical 
product silica is extended to reach food processing, soap and cleaners 
industries, photovoltaic, catalysis, etc. [46-50]. Further applications 
of silica includes materials for controlled release (Fragrances and 
Aromas, active pharmaceutical ingredients (APIs), Biocides), Inks 
and Coatings, Catalysis for Fine and Specialty Chemicals, etc. filler 
of rubber reinforcement [51,52]. Elemental silicon also finds many 
applications in different forms such as nanowires as photovoltaics and 
as light emitting devices, in energy and electronic field, photocatalysis, 
etc. [48,53]. 

Silica nanoparticles (MSNs) have been extensive investigated as a 
drug delivery system as it possess excellent properties such high specific 
area, high pore volume, tunable pore structures and physicochemical 
stability. Earlier MSNs were used for controlled delivery of various 
hydrophilic or hydrophobic active agents. Later advances in the MSN 
surface properties such as surface functionalization and PEGylation 
rendered them as a promising drug delivery vehicle for cancer treatment 
[54]. Encapsulation of Water Insoluble Drugs in Mesoporous Silica 
Nanoparticles using Supercritical Carbon Dioxide was reported by [55]. 
The biomedical application of silica includes the application of Silica-
Gold Core Shell Structured Nanoparticles for targeted delivery system 
[50]. A facile and novel approach for the synthesis of Fe3O4/SiO2 core/
shell nanocubes in which magnetite nanocubes can be functionalized 

with uniform silica shell for various bio-sensing applications were 
reported by [56]. Nivorozhkin  reviewed the developments in using 
silica materials in drug delivery applications to bring it in the realm of 
commercial applications compatible with FDA to enter clinical trial [57]. 
Zeolite Y in the sodium form (NaY) was synthesized using amorphous 
silica ash derived from waste rice husks for use as an antimicrobial agent 
for controlling implant-related infections was developed by Salama 
et al. [58]. The Application of silica as 3D biosensor was reviewed by 
Wu [59]. López et al. reported the application of SiO2 Nanostructured 
Materials for Local Delivery of anticancer drug Methotrexate [60]. 
Functionalized Dendritic Mesoporous Silica Nanoparticles for the pH 
controlled release of curcumin was reported by AbouAitah et al. [61]. 
Hsiao et al. synthesized core-shell fluorescently labeled SiO2 NP of 15, 60 
and 200 nm diameter and analyzed their cytotoxicity in THP-1 derived 
macrophages, A549 epithelial cells, HaCaT keratinocytes and NRK-52E 
kidney cells for studying the cellular uptake of Silica nanoparticles [62].

Bioglass 
In 1969, Hench et al. termed certain silicate-based glass 

compositions as “bioactive” for their ability to bond chemically to 
rat bone. This oldest bioglass(BG) composition, consists of a silicate 
network (45 wt% SiO2) incorporated with 24.5 wt% Na2O, 24.5 wt% 
CaO and 6 wt% P2O5 as network modifier. Bioactive glass compositions 
developed over the years are sodium free or have additional elements 
such as such as fluorine, magnesium, strontium, iron, silver, boron, 
potassium or zinc incorporated in the network [63].

The use of Bioactive Glass S53P4 in Reconstructive Surgery 
in the Upper Extremity Showing Bone remodeling followed by its 
vascularization, cartilage repair and antibacterial properties was shown 
by Lindfors [64]. Tripathi et al. prepared bioactive glass containing SiO2-
Na2O- CaO-P2O5-MgO was fabricated by sol-gel process. Bioactivity 
of the glass was explored by immersion in stimulated biological fluid 
(SBF) for different time periods. The formation of hydroxyl carbonate 
apatite (HCA) layer was identified by FTIR spectrometry, scanning 
electron microscope (SEM) and XRD which showed the presence of 
HCA as the main phase in all tested bioglass samples [65]. Rendón et 
al. reported the synthesis of bioactive sol-gel coatings and deposited 
on stainless steel AISI 316L using a pneumatic spray. The corrosion 
resistance of the coatings was tested with potentiodynamic curves 
after immersion of the coatings in SBF for 7 and 40 days. Wollastonite 
dispersed in the sol matrix is compatible with the physiological 
environment and the composition of SiO and CaO helps to accelerate 
the osteointegration forming an apatite layer in a short period. This 
fast bioactive response allows to the implant to have a good fixation 
to the bond [66]. Vasconcelos et al. evaluated the antimicrobial 
activity of a new formulation containing red and green propolis. The 
propolis loaded bioglass did not lose the antimicrobial activity. Results 
suggest that propolis in this sustained release formulation should be 
further tested as an alternative therapy against infectious agents of 
the oral cavity [67]. In vitro biocompatibility of bioglass synthesized 
in hydrothermal chemical route by the use of microwave energy 
irradiation was reported by Sarkar and Lee [68]. Haach et al. fabricated 
PMMA+HA and PMMA+45S5 scaffold and compared their mechanical 
properties and in vivo test. The histological analysis and mechanical 
properties suggest that both materials are suitable to bone replacement 
of small size areas [69]. Chitosan-based bioactive glass (BG-CH) with 
17 wt% chitosan was fabricated by a freeze-drying process. BG-CH was 
implanted in the muscle and in the femoral condyles of ovariectomised 
rats. Grafted tissues were carefully removed for physico-chemical and 
histological analysis. Results suggests that antiosteoporotic ability 
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Development of resorbable calcium phosphate cement with 
load bearing capacity was reported by Unosson and Engqvist [82]. 
Bioceramics based on α-alumina and calcium phosphate was synthesized 
and physical property was determined for application as dental implant 
[83]. Kumar et al. fabricated self-setting bone cement formulations 
based on egg shell derived tetracalcium phosphate bioCeramics that 
can immensely improve the material and biological properties of the 
self-setting bone cement [84]. Setting mechanisms of acidic premixed 
Calcium Phosphate cement was investigated by Jonas et al. [85]. 
Toyama et al. synthesized sulfate-ion-substituted hydroxyapatite from 
amorphous calcium phosphate [86]. Tensile Stress in bone cement is 
influenced by cement mantle thickness, acetabular size, bone quality, 
and body mass Index in case of total hip replacement was investigated 
by Lamvohee et al. [87]. Kato et al. developed ultrathin amorphous 
calcium phosphate freestanding sheet for dentin tubule sealing [88]. 
Padilla et al. developed Novel Nanostructured Zn-substituted Monetite 
as a biomaterial fore bone regeneration [89]. Nano-hydroxyapatite 
(nHA) coated with the biodegradable co-polymer poly(glycolide)-
poly(ethylene glycol) (PGA-PEG) was synthesized for the delivery 
of Statins to treat low bone density pathologies [90]. CNT reinforced 
hydroxyapatite was prepared exhibited improved fracture toughness 
with respect to that of pure HAp for potential application in bone tissue 
engineering [91]. Biocompatible HA/Mwcnts/BSA was modified with 
TiO2 for Using as a Bone Replacement Materials [92]. Effects of surface 
roughness of hydroxyapatite on the attachment and proliferation of rat 
osteosarcoma cells was studied by Li et al. [93].

Zeolites
Zeolites are crystalline, hydrated aluminosilicates of alkali and 

alkaline earth cations, consisting of three dimensional frameworks 
of SiO4

4- and AlO5
4- tetrahedral linked through the shared oxygen 

atoms [94]. They are crystalline nanoporous inorganic materials with 
well-defined interconnected channels or cavities in the nanometre or 
subnanometer length scale, termed as micropores (0.5-2 nm) [95]. 
Zeolites are among the most important inorganic cation exchangers. 
The aluminosilicate structure is negatively charged and attracts cations 
that come to reside inside the pores and channels. Zeolites have large 
empty spaces, or cages, within their structures that can accommodate 
large cations, such as Na+, K+, Br+ and Ca2+ and even relatively large 
molecules and cationic groups, such as water, ammonia, carbonate ions, 
and nitrate ions [96]. Zeolite finds its application as adsorbents, ion 
exchangers and catalysts in industry, veterinary medicine, agriculture, 
sanitation and environmental protection. In human medicine zeolites 
have been applied as antidiarrheal remedies, the removal of ammonia 
ions from kidney dialysates, external treatment of wound and athlete 
foot, etc. [94]. Guo et al. photoactivated the Zeolite framework by 
encapsulating with semiconductor oxides, thereby enhancing the 
efficiency and selectivity as photocatalyst [95]. 

The properties such as long-term chemical and biological stability, 
ability to reversibly bind small molecules, size and shape selectivity, 
possibility of metalloenzyme mimicry and immunomodulatory activity 
reasons for the use of zeolite for biomedical applications [94]. Pavelic et 
al. reported the use of finely ground clinoptilolite (a natural zeolite) as 
a potential adjuvant in anticancer therapy [97]. In vitro application of 
zeolite as biomaterial on Stimulated Biological Fluid (SBF) and two types 
of cells (chronic myelogeneous leukemia and swiss albino fibroblast 
culture cells) was observed by Ceyhan et al. [98]. The application of 
zeolite composite membranes and crystals as potential vectors for 
drug-delivering biomaterials was observed by Tavolaro et al. [99]. 
Electrospinning method was used to fabricate polyurethane nanofibers, 

makes of BG-CH a useful material for preventing bone loss associated 
with postmenopausal osteoporosis [70].

Mabrouk et al. prepared Nanobioactive quaternary glass system 
46S6 by modified sol-gel process at 600°C with particle size ranging 
between 40-60 nm and a decrease in the gelation time. The in vitro 
biocompatibility of the sol-gel prepared glass was faster compared to 
the melting bioglass. Cell viability assay confirmed the effectiveness of 
the prepared bioactive glass as a bone replacement material. Composite 
scaffolds of polyvinyl alcohol (PVA) and/or quaternary bioactive glass 
(46S6 system) loaded ciprofloxacin were prepared by lyophilisation 
technique. The scaffold was characterized by Porosity SEM, XRD and 
FTIR. Biodegradation rate and prolonged drug release assay suggests 
that the scaffold offers a distinguish treatment for osteomylitis as well 
as local antibacterial effect [71]. Bioactive glasses, doped with traces 
of copper (Cu) and zinc (Zn) were synthesized by fusion method. Cu 
and Zn present interesting functions for the biological metabolism 
through their antibacterial, anti-inflammatory and antifungal 
properties. The material was non-cytotoxic to osteoblast cells SaOS and 
endothelial cells while exhibiting invivo biocompatibility as shown by 
the formation of hydroxyapatite. These biomaterials offer an alternative 
for the orthopaedic or maxillo-facial surgery [72]. Bioavailability of 
strontium ions from bioactive glasses in vivo was studied by Lao et al. 
[73]. Waselau et al. studied the in vivo effects of bioactive glass S53P4 
or beta tricalcium phosphate on osteogenic differentiation of human 
adipose stem cells after incubation with (bone morphogenic protein 
2) BMP-2 protein [74]. Glass reinforced hydroxyapatite composite and 
highly crystalline and still resorbable HAP by additions of alpha or beta 
tricalcium phosphate, Ca3(PO4)2, (TCP) was presented by Hannickel 
and Prado [75]. The role of TiO2+ZrO2 in the system of 45S5 bioactive 
glass for improving the bioactivity as well as other physical and 
mechanical properties of 45S5 bioactive glass was evaluated by XRD, 
FTIR, SEM, Density and compressive strength analysis by Himanshu 
et al. [76]. Structural, magnetic and in vitro bioactivity of Co-Cu ferrite 
and bioglass composite for hyperthermia in bone tissue engineering 
was studied by Sampath [77]. Implantation of nano bioglass scaffold 
enhanced with mesenchymal stem cell in rat calvaria was studied by 
Amiri [78]. 

Calcium Phosphate
Calcium phosphate (CaP) biomaterials are of special interest 

because they are bioactive and can form intimate and functional 
interfaces with neighbouring bone. Some commonly used CaPs include 
monocalcium phosphate monohydrate, monocalcium phosphate 
anhydrous, dicalcium phosphate dihydrate, dicalcium phosphate 
anhydrous, octacalcium phosphate, α- and β-tricalcium phosphate 
(TCP), amorphous CaP (ACP), calcium-deficient hydroxyapatite(HA) 
and HA [79]. CaP biomaterials are commonly used in orthopedic 
and dental surgery as bone void fillers or as a coating material on 
metallic implants [80]. The application of CaP ranges from hard tissue 
regeneration to the delivery of small molecules, oligonucleotides, and 
proteins. CaP also holds promise as a vaccine Adjuvant where nanoscale 
formulations have been shown to be more effective than micrometer-
sized particles at targeting lymph node dendritic cells for enhancing 
immunity [81]. Calcium Phosphate Cement (CPC) is another calcium 
phosphate biomaterial, is a self-setting synthetic bone graft materials. 
CPC was approved in 1996 by the Food and Drug Administration 
(FDA) for repairing craniofacial defects. When mixed with an aqueous 
solution to form a paste, CPC can self-harden to form HA in situ. 
Moreover CPC has good biocompatibility and injectability, enabling 
minimally invasive [79].
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enhanced by zeolite crystals showed the normal development and 
growth of cells and exhibits antimicrobial effect against bacterial 
strains. This nanocomposite structure is promising for their potential 
usage and value in biomedical engineering applications [100]. Class 
“F” fly ash was used to obtain new zeolite materials for advanced 
wastewater treatment for removal of heavy metals(Cd2+, Cu2+ and Ni2+) 
from synthetic wastewaters containing one, two and three pollutants 
[101]. Leggo evaluated the properties and benefits of using an organo-
zeolitic fertilizer (biofertilizer) for the production of food crops and the 
vegetation of contaminated land [102]. Clinoptilolite sorbent KLS-10-
MA was prepared as food additive in laboratory inbred ICR line mice 
and reduction in lead bioaccumulation was explored. The results shows 
a significant favourable effect and thus it appears as a reliable means for 
detoxification of human and animal organisms chronically poisoned by 
heavy metals, particularly lead [103]. Leggo reported the use of Organo-
zeolitic biofertilizer was used as new strategy of soil amendment to 
greatly enhance the scope of plant growth on damaged and marginal 
soils [104]. Aluminium ion adsorption capacity of zeolite from polluted 
tap water was investigated by Abdullah [105]. The influence of zeolites 
as feed additives on the chemical, biochemical and histological profile 
of fish. Rainbow Trout was supplemented with normal diet and diet 
supplemented with 1-4% of natural zeolite. Pathomorphological and 
histological examinations of muscle tissues and internal organs of the 
rainbow trout was carried out along with lipid fatty acid and amino 
acid composition. The results of this study confirmed that zeolites had 
a positive effect on the chemical, amino acid and fatty acid composition 
without any pathological changes in the liver, muscles and other organs 
[106]. Zeolite Y in the sodium form (NaY) was synthesized using 
amorphous silica ash derived from waste rice husks and was modified 
ZnO and ZnS. The antimicrobial activity was tested NaY, ZnO/NaY 
and ZnS/NaY. The result show a superior antimicrobial activity of ZnS/
NaY compared to the rest therefore making it a potential candidate as 
an antimicrobial agent for controlling implant-related infections [107]. 
Synthesis of porous gelatin/hyaluronic acid/zeolite composite scaffolds 
by lyophilisation technique was used for wound-healing applications by 
Grohens [108]. Aflatoxin and two adsorbents (Zeolite and Mycosorb) 
were added to diet to evaluate some blood biochemical and enzyme 
activities in broiler chickens. Results showed reduced adverse effects 
of AF which could be helpful in a solution of aflatoxicosis problem in 
poultry [109].

Magnetic Nanoparticles
Magnetic materials are those materials that show a response to 

an applied magnetic field. They are classified into five main types; 
ferromagnetic, paramagnetic, diamagnetic, antiferromagnetic and 
ferrimagnetic. Magnetic nanoparticles (MNPs) are those nanoparticles 
(NPs) that show some response to an applied magnetic field. MNPs 
are of great interest for a wide range of disciplines, such as magnetic 
fluids, catalysis, biomedicine, magnetic energy storage, information 
storage and spintronics, etc. [110]. Biomedical applications of magnetic 
nanoparticles can be classified according to their application inside or 
outside the body (in vivo, in vitro). For in vitro applications, the main 
use is in diagnostic separation, selection and magnetorelaxometry, while 
for in vivo applications, it could be further separated in therapeutic 
(hyperthermia and drug-targeting) and diagnostic applications 
(nuclear magnetic resonance [NMR] imaging) [111,112].

High efficacy in hyperthermia-associated with polyphosphate 
magnetic nanoparticles for oral cancer treatment was reported by 
Candido et al. [113]. Thermosensitive magnetic nanoparticles for self-
controlled hyperthermia cancer treatment were reported by Martirosyan 

[114]. Israel et al. synthesized ultrasound-mediated surface engineering 
of theranostic magnetic nanoparticles synthesis using mixed polymers 
for siRNA delivery [115]. Hereba et al. studied the effect of magnetic 
microspheres on some biophysical parameters of human blood [116].

Zinc Oxide 
Zinc Oxide (ZnO) films have become technologically important 

due to their range of high electrical (piezoelectric constant), optical 
properties (band gap), good chemical and mechanical stability, low 
toxicity and biodegradability [117-119]. This metal oxide finds its 
application in wide spectrum such as UV light emitters, spin functional 
devices, gas sensors, transparent electronics and surface acoustic wave 
devices, wireless fluorescence lamp, image recorder, rheostat, phosphor, 
cosmetics and sunscreens food industry, astringent for eczema, 
excoriation, wounds and haemorrhoids in human medicine as additives, 
packaging due to their antimicrobial properties [118,120]. They are also 
being explored for their potential use as fungicides in agriculture and 
as anticancer drugs and imaging in biomedical applications such as 
glucose, phenol H2O2, Urea, Cholesterol biosensors, etc. [121]. 

Recently application of ZnO nanoparticles in the perspective of 
opportunities and challenges in veterinary sciences was reviewed by 
Raguvaran et al. [120]. Guano et al. and Wallace et al. reported the 
synthesis of zinc oxide crystals with controlled size and morphology 
and ZnO nanowire respectively [121,122]. Nanocrystalline zinc oxide 
thin films were synthesized for application as ethanol vapour sensor 
by Bhasha et al. [118]. Mugwang et al. synthesized Aluminum Doped 
Zinc Oxide (Azo) thin films for solar cell apllications [123]. Zinc oxide 
nanomaterials for biomedical fluorescence detection were reviewed 
by Hahm [124]. Sub-acute oral toxicity of zinc oxide nanoparticles in 
male rats was reported by Ben-Slama et al. [118]. The author reported 
that oral exposure to moderate dose of ZnO-NPs has no significant 
main effect on the behavior of the rodents and causes subtle signs 
of toxicity. Kisan et al. investigated the effect of nano-Zinc Oxide on 
the leaf physical and nutritional quality of spinach. The reported that 
Nano-zinc oxide (1000 ppm) can be used as a biofortification agent to 
improve protein and dietary fibre contents of spinach leaves [125]. 

Apart from the above mentioned particle there are a number 
of metallic nanoparticles that offer a wide range of application. The 
applications of silver nanoparticles have attained the highest level of 
commercialization compared to other nanomaterials [126]. Silver 
nanoparticle is used as antimicrobial agent, magnetic and optical 
polarizability, catalysis, electrical conductivity, DNA sequencing, 
surface-enhanced Raman scattering and various other applications 
[127-129]. Copper and copper oxide nanoparticle finds its application 
in catalyst, electrical, optical, antidiabetic, antioxidant, antimicrobial 
activities [128,130]. Novel Selenium nanoparticles (SeNPs) are attracting 
increasing attention as potential drug carriers due to their excellent 
biological and chemopreventive activity [131-133].Gold nanoparticles, 
due to its biocompatibility and simple method of preparation, have wide 
range of application right from genomics, biosensor, immunoassay, 
clinical chemistry, detection and photothermolysis of microorganisms 
and cancer cells; targeted delivery of drugs, peptides, DNA and 
antigens, optical bioimaging and monitoring of cells and tissues, water 
purification, etc. [134,135].

Conclusion
The above review investigates the latest advances in inorganic 

materials for various applications with special emphasis on biological 
perspective. Inorganic materials have been used since antiquity and 
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scientific research has further uplifted its potential for more delicate 
application by hybridizing with organic materials. The author hopes 
that the review gives more insight and help in the advancement of 
future research.
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