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Abstract 
In this research, free convection of a non-Newtonian silver-water nanofluid between two infinite parallel 

perpendicular flat plates is investigated. The Maxwell Garnetts (MG) nanofluid model is used in this work. The 
basic partial differential equations are reduced to the ordinary differential equations which are solved analytically 
using Homotopy Perturbation Method (HPM). The impact of various physical parameters such as nanoparticle 
volume fraction (φ ), dimensionless non-Newtonian viscosity ( ) and Eckert number (Ec) on the velocity and
dimensionless temperature profiles is studied. The comparison of the results of HPM, Akbari-Ganji’s Method 
(AGM), Collocation Method (CM), the fourth-order Runge-Kutta numerical Method (NUM) and FlexPDE software 
results shows excellent complying in solving this problem. Also, this research shows that AGM and HPM are 
powerful methods to solve non-linear differential equations, such as the problem raised in this research.

Keywords: Free convection; Non-Newtonian; Nanofluid; Homotopy 
Perturbation Method; Akbari-Ganji’s method; Collocation method; 
FlexPDE software

Introduction
In fluid mechanics, we study the particles’ behavior at any point 

within the range of different physical conditions. Mathematical models 
are used to describe physical phenomena in fluid mechanics for a 
variety of fluids such as Newtonian and non-Newtonian fluids. More 
engineering problems, especially some of the heat transfer equations 
are non-linear. For this reason, resolving these difficult problems has 
been a controversial issue for mathematicians, physicists and engineers. 
Some equations are solved by numerical solutions; some are solved 
using different analytical methods. Methods that can be introduced to 
examine the non-linear problems such as the Differential Transform 
Method (DTM) [1-2], Least Square Method (LSM) [3-4], Akbari-
Ganji’s Method (AGM) [5-8], Hamiltonian Approach [9], Variational 
Iteration Method (VIM) [10], and Adomian’s Decomposition Method 
(ADM) [11], many methods are not considered in this study because 
of brevity. One of the semi-analytical methods which does not need 
small parameters is the Homotopy Perturbation Method (HPM). 
The homotopy perturbation method, proposed first by He in 1998 
and was further developed and improved by He [12]. This method in 
most cases provides fast convergence to solve series. Usually, due to 
the small number of trial and error, leads to the achievement of high-
precision solutions. This new method is applied in a lot of researches 
in engineering sciences [13-17]. Heat transfer by free convection 
frequently occurs in many physical problems and engineering 
applications such as geothermal systems, heat exchangers, chemical 
catalytic reactors, fiber and granular insulation, packed beds, petroleum 
reservoirs and nuclear waste repositories [18-21]. In view of its 
importance, the flow of Newtonian and non-Newtonian fluids through 
two infinite parallel perpendicular flat plates has been examined by a 
large number of researchers. The natural convection problem between 
vertical flat plates for a certain class of non-Newtonian fluids has been 
carried out by Bruce and Na [22]. Other laminar natural convection 
problems involving heat transfer have been also studied by Ziabakhsh 
and Domairry [23]. Rajagopal and Na [24] presented an analysis for 
the natural convection in non-Newtonian fluid flow between two 

parallel plates. Yoshino et al. [25] presented a new numerical method for 
incompressible non-Newtonian fluid flows based on the lattice Boltzmann 
method (LBM). Pawar et al. [26] carried out an experimental study on 
isothermal steady state and non-isothermal unsteady state conditions in 
helical coils for Newtonian and non-Newtonian fluids. Also, numerous 
models and methods have been proposed by different authors to study 
convective flows of nanofluids and we mention here the papers written 
by Khan and Pop [27] Vajravelu et al. [28] and Yacob et al. [29]. The 
main aim of this work is to present the effects of nanoparticle volume 
fraction, dimensionless non-Newtonian viscosity and Eckert number 
on velocity profiles and temperature profiles in the flow of nanofluids 
between two infinite parallel perpendicular flat plates. The Maxwell–
Garnetts (MG) nanofluid model [30] is used in this work. The reduced 
ordinary differential equations are solved analytically using HPM. The 
comparison of the results of HPM, Akbari-Ganji’s Method (AGM), 
Collocation Method (CM), the fourth-order Runge-Kutta numerical 
Method (NUM) and FlexPDE software results shows excellent 
complying in solving this non-linear problem. 

Description of the problem
The schematic theme of the problem is shown in Figure 1. This 

figure includes two parallel plates, perpendicular to each other, in 
which there is a non-Newtonian fluid flowing due to the free convection 
between two parallel plates. The distance between the two plates is 2b. 
The walls at x= +b and x= -b are held at constant temperatures 2T and

1T , respectively, where 2T  > 1T . The difference between the two walls 
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temperature makes the fluid near the wall, to rise at x= -b and fall at x= 
+b. The fluid is a water-based nanofluid containing silver. It is assumed 
that the source of fluid and nanoparticles are in thermal equilibrium,
and no slip occurs between them. The thermo-physical properties of
the nanofluid are listed in Table 1 [31].

The effective density ( n fρ ), the effective dynamic viscosity ( n fµ ), the
heat capacitance ( )p n fCρ  and the thermal conductivity ( n fK ) of the 
nanofluid can be expressed as where (φ ) is the solid volume fraction. 

(1 )n f f sρ ρ φ ρ φ= − +      (1)

(1 )
f

n f

µ
µ

φ
=

+
  (2)

( ) ( ) (1 ) ( )p n f p f p sC C Cρ ρ φ ρ φ= − +     (3)

2 2 ( )
2 2 ( )

n f s f f s

f s f f s

K K K K K
K K K K K

φ
φ

+ − −
=

+ + −
               (4)

Rajagopal [24] has demonstrated that by using the similarity 
variables:

0 1 2

, , mT TxV X
V b T T
ν θ

−
= = =

−
                  (5)

Under these assumptions and following the nanofluid model 
proposed by Maxwell–Garnetts (MG) model [30], the Navier-Stokes 
and energy equation can be reduced to the following pair of ordinary 
differential equations:

2 2
2.5 2

2 26 (1 ( 0 ) )d V dV d V
dX dX dX

φ θδ+ − + =                      (6)

2 2.5
2 4

2
1 1

(1 ). .( )( ) 2 ) 01. .( )(d dVp dVEc
dx A dX

r E pr
A X

c
d

δθ φ −−
+ + =   (7)

Where Prandtl number ( pr ), Eckert number ( Ec ),
dimensionless non-Newtonian viscosity (δ ) and 1A  have the
following forms:

2 2
0 3 0

2
1 2

( ) 6, ,
( ) ( )

f f p f

p f f f f

V C VEc pr
C T T K b
ρ µ ρ βδ

ρ ρ µ
= = =

−
                 (8)

1

2 2 ( )
2 2 ( )

n f s f f s

f s f f s

K K K K K
A

K K K K K
φ
φ

+ − −
= =

+ + −
                 (9)

The appropriate boundary conditions are:

1: 0, 0.5
1: 0, 0.5

X V
X V

θ
θ

= − = =
= + = = −

                  (10)

Mathematical Procedures
In this section three methods have been examined:

Homotopy perturbation method (hpm)

 To explain the basic ideas of this method, we consider the following 
non-linear differential equation:

( ) ( ) 0,A u f r r− = ∈Ω  (11)

With the boundary condition of:

( , ),uB u r
n
∂

∈Γ
∂

   (12)

Where A is a general differential operator, B a boundary operator, 
( )f r a known analytical function, (Γ ) is the boundary of the domain 

(Ω ) and ( u
n
∂
∂

) denotes differentiation along the normal drawn

outwards from (Ω ). 

 A can be divided into two parts which are L and N, where L is 
linear part and N is non-linear part. Eq. (11) can therefore be rewritten 
as follows:

( ) ( ) ( ) 0L u N u f r+ − =                 (13)

Homotopy perturbation structure is shown as follows:

0 0( , ) ( ) ( ) ( ) ( ( ) ( )) 0H p L L u pL u p N f rν ν ν= + + + − =   (14)

Where,

( , ) : [0,1]r p Rν Ω× →   (15)

In Eq. (14), p∈ [0, 1] is an embedding parameter and 0u  is the first
approximation that satisfies the boundary condition. We can assume that 
the solution of Eq. (14) can be written as a power series in p , as following:

2
0 1 2 ..............p pν ν ν ν= + +                 (16)

and the best approximation for solution is:

1 0 1 2lim ..............pu ν ν ν ν→= = + +                   (17)

Collocation method (cm)

Weighted residual method was first introduced by Ozisk [32] 
to solve the differential equation in heat transfer, Collocation and 

T2

y

g

x

2b

T1 T2

Figure 1: Geometry of the considered problem.

Material Density (kg/m3) Cp (J/kg.k) K (w/m.k) β× 10-5(k-1)
Pure water                997.1 4179 0.613 21

Silver   10500 235 429 1.89

Table 1: Thermo-physical properties of water and nanoparticles [31].
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Galerkin method are analytical methods that are based on the weighted 
residual method.

Suppose a differential operator D, is applied on a function u  to
produce a function p

( ( )) ( )D u x p x= (18)

u  is approximated by a function u , which is a linear combination 
of basic functions chosen from a linearly independent set. That is,



1

n

i i
i

u u cφ
=

≅ =∑              (19)

Now, when substituted into the differential operator, D, the result 
of the operations is not, in general, ( )p x . Hence an error or residual
will exist as

( ) ( ) ( ( )) ( ) 0E x R x D u x p x= = − ≠               (20)

 The main idea of the CM is to force the residual to zero in some 
average sense over the domain. That is:

( ) ( ) 0, 1, 2,3.........i
X

R x W x i n= =∫    (21)

Where the number of weight functions Wi is exactly equal to the 
number of unknown constants ic  in u  function. The result is a set
of n algebraic equations for the unknown constants ci. For collocation 
method, the weighting functions are taken from the family of Dirac  
functions in the domain. That is, ( ) ( )i iW x x xδ= − . The Dirac
function has the property of:

1
( )

0 otherwise
i

i

if x x
x xδ

=
− = 


Also, the residual function in Eq. (20) must be forced to be zero at 

specific points.

Akbari-Ganji’s Method (AGM)

Boundary conditions and initial conditions are required differential 
equation according to the physic of the problem. Therefore, we can solve 
every differential equation with any degrees. In order to comprehend 
the given method in this paper, two differential equations governing 
on engineering processes will be solved in this new manner. The non-
linear differential equation of p which is a function of u, the parameter u 
which is a function of x and their derivatives are considered as follows:

The non-linear differential equation p (which is a function ofu ),
the parameter u (which is a function of x ), and their derivatives are
considered as follow:

: ( , , ,....... ) 0 ; ( )m
kp f u u u u u u x′ ′′ = =                  (22)

Boundary conditions:
( 1)

0 1 1
( 1)

0 1 1

(0) , (0) ,....... (0)

( ) , ( ) ,........ ( )

m
m

m
L L Lm

u u u u u u
u L u u L u u L u

−
−

−
−

′ = = =


′= = =
  (23)

To solver the first differential equation, with respect to the boundary 
conditions in x = L  in Eq. (23), the series of letters in the n th order
with constant coefficients, which is the answer of the first differential 
equation, is considered as follows: 

1 2
0 1 2

0
( ) lim lim( ........ )

n
i n

i nn ni
u x a x a a x a x a x

→∞ →∞=

= = + + +∑               (24)

The boundary conditions are applied to the function as follows:

a) The application of the boundary conditions for the answer of 
differential Eq. (24) is in the form of 

If x =0

0 0

1 1

2 2

(0)
(0)
(0)

: : :
: : :
: : :

u a u
u a u
u a u

= =
 ′ = =
 ′′ = =






              (25)

And when x = L

0

1

1

2
0 1 2

2 1
1 2 3

2 2
2 3 4

(0) ......

(0) 2 3 ......

(0) 2 6 12 ...... ( 1)

: : : : : :
: : : : : :
: : : : : :

m

n
n L

n
n L

n
n L

u a a L a L a L u

u a a L a L na L u

u a a L a L n n a L u
−

−

−

 = + + + + =

′ = + + + + =


 ′′ = + + + + − =






(26)

b) After substituting Eq. (26) into Eq. (22), the application of
the boundary conditions on differential Eq. (22) is done according to 
the following procedure:

( )
0

( )
1

: ( (0), (0), (0),........ (0))

: ( ( ), ( ), ( ),........ ( ))
: : : : :
: : : : :

m

m

p f u u u u
p f u L u L u L u L

′ ′′

′ ′′
(27)

With regard to the choice of n; (n < m) sentences from Eq. (24) 
and in order to make a set of equations which is consisted of (n + 
1) equations and (n + 1) unknowns, we confront with a number of
additional unknowns which are indeed the same coefficients of Eq. (24). 
Therefore, to remove this problem, we should derive m times from Eq.
(22) according to the additional unknowns in the afore-mentioned set
differential equations and then this is the time to apply the boundary
conditions of Eq. (23) on them.

( 1)

( 2)

: ( , , ,...... )

: ( , , ,...... )
: : : :
: : : :

m
k

IV m
k

p f u u u u

p f u u u u

+

+

′ ′ ′ ′′ ′′′

′′ ′′ ′′ ′′′                (28)

Application of the boundary conditions on the derivatives of the 
differential equation kp  in Eq. (28) is done in the form of

( 1)

( 1)

( (0), (0), (0),......, (0) )
:

( ( ), ( ), ( ),......, ( ) )

m

k
m

f u u u u
p

f u L u L u L u L

+

+

′ ′ ′′ ′′′
′ 
 ′ ′ ′′ ′′′

(29)
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( 2)

( 2)

( (0), (0),......, (0) )
:

( ( ), ( ),......, ( ) )

m

k
m

f u u u
p

f u L u L u L

+

+

′′ ′′ ′′′
′′ 
 ′′ ′′ ′′′

(30)

The ( 1n + ) equations can be made from Eq. (25) to Eq. (30)
so that ( 1n + ) unknown coefficients of Eq. (24) for example,

0 1 2 3, , , ........... na a a a a can be computed. The answer of the non-
linear differential Eq. (22) will be gained by determining coefficients 
of Eq. (24).

According to different works with AGM method and similar 
methods have been shown the AGM method is powerful method 
to solve non-linear problems. Because this method solves different 
variable such as power series, Sine and exp function at the same time 
and shows acceptable outcomes.

Application of described methods in the problem
Homotopy Perturbation Method (HPM)

In this section, we will apply the HPM to non-linear ordinary 
differential Eqs. (6) and (7). According to the HPM, we construct a 
homotopy suppose the solution of Eqs. (6) and (7) has the form:

2 2 2
2.5 2

2 2 2

2 4
2 2

2 2 2.5

( , ) (1 )( ( )) ( ( ) 6 (1 ) ( ( )) ( ( )) ( )),

. .( ( )) 2 . .( ( ))
( , ) (1 )( ( )) ( ( ) ),

(1 )

d d d dH v p p V x p V x V x V x x
dx dx dx dx

d dEc pr V x Ec pr V xd d dx dxH u p p x p x
dx dx A A

δ φ θ

δ
θ θ

φ

= − + + − +

= − + + +
−

(31)

We consider V(x) and θ(x) as follows:

2 3 4
0 1 2 3 4

0

2 3 4
0 1 2 3 4

0

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

m
i

i
i
m

i
i

i

V x p V x V x pV x p V x p V x p V x

x p x x p x p x p x p xθ θ θ θ θ θ θ

=

=

= = + + + +

= = + + + +

∑

∑
  (32)

Substituting Eq. (32), into Eq. (31), and some simplification and 
rearranging on powers of P-terms, we have:

2

02
0

2

02

( ) 0
:

( ) 0

d V x
dxP
d x
dx

θ


=


 =

                 (33)

1: 0, 0.5
1: 0, 0.5

X V
X V

θ
θ

= − = =
= + = = −

             (34)

2 2
2.5 2

0 0 0 12 2

1
2 4

2 0 0

12 2.5

6 (1 ) ( ( )) ( ( )) ( ) ( ) 0

:
. .( ( )) 2 . .( ( ))

( ) 0
(1 )

d d dV x V x x V x
dx dx dx

P d dEc pr V x Ec pr V xd dx dxx
dx A A

δ φ θ

δ
θ

φ


− + + =





+ + =
−

(35)

1: 0, 0
1: 0, 0

X V
X V

θ
θ

= − = =
= + = =

              (36)

Solving Eqs. (33) and (35) with boundary conditions:

0 0
1( ) 0, ( )
2

V x x xθ= = −                  (37)

3 3
1 1

1( ) ( ) 0.083333 0.083333 , ( ) 0
12

V x x x x x xθ= − − = − =   (38)   

:
:
In the same manner, the rest of components were obtained by using 

the Maple package, that we obtain (32) parameters of it. According to 
HPM, we can conclude:

0 1 2 3
1

0 1 2 3
1

( ) lim ( ) ...

( ) lim ( ) ..
p

p

V x x

x x

ν ν ν ν ν

θ θ θ θ θ θ
→

→

= = + + + +

= = + + + +
(39)

Collocation Method (CM)

Since trial function must satisfy the boundary conditions in Eq. 
(10), so they will be considered as

2 3 5 7
1 2 3 4

2 3 5 7
5 6 7 8

( ) ( 1) ( ) ( ) ( )
1( ) ( 1) ( ) ( ) ( )
2

V x c x c x x c x x c x x

x x c x c x x c x x c x xθ

= − + − + + − + + − +

= − + − + − + + − + + − +
(40)

We select the collocation locations x = 1/5 to 4/5 which are
evenly spaced throughout the domain. Introducing these values into 
the residual Eq. (40). Thus we have eight algebraic equations for 
the determination of the eight unknown coefficients 1c to 8c . For
example, Using collocation method with (Pr=0.5, Ec=0.5, φ =0.05, δ
=0.5) ( )V x  and ( )xθ are as follows:

2 3

5 7

2 3

5

( ) ( 0.0005928982795)( 1) ( 0.08194420952)( )
( 0.002748439302)( ) 0.001931555065( )
( ) 1/ 2 ( 0.001224245165)( 1) ( 0.0007411354396)( )
( 0.0002229640164)( ) 0.00036548730

V x x x x
x x x x

x x x x x
x x

θ

= − − + − − +

+ − − + + − +

= − + − − + − − +

+ − − + + 740( )x x− +

(41)

Akbari-Ganji’s Method (AGM)

In order to solver the differential Eqs. (6) and (7), an answer 
function is considered as a finite series in the form of

3
2 3

0 1 2 3
0

3
2 3

0 1 2 3
0

( )

( )

i
i

i

i
i

i

v x a x a xa x a x a

x c x c xc x c x cθ

=

=

= = + + +

= = + + +

∑

∑
(42) 

The given answer function has the constant coefficients 0a  to 3a
and 0c to 3c , which can easily be computed by applying the initial
conditions from Eq. (10). It is notable that the more numbers of series 
sentences of Eq. (42), the more precise the answer, and the answer is 
tended to the exact solution [8]. For example, Using Akbari-Ganji’s 
Method with (Pr=1, Ec =0.1, φ =0.01, δ =0.2) 0a  to 3a and 0c to

3c are as follows:

0 1 2 3

0 1 2 3

a  = 0, a  = -0.8085e-1, a  = 0, a  = 0.8085e-1
c  = 0.1354e-2, c = -0.5, c  = -0.1354e-2, c  = 0

  (43)

By substituting the constant coefficients from Eq. (43) into Eq. (42), 
the solution of the non-linear differential Eqs. (6) and (7) can be gained as
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3

2

( ) 0.8085 1 0.8085 1
( ) 0.1354 2 0.1354702579 2 0.5

V x e x e x
x e e x xθ

= − − −

= − − − −
  (44)

Solution whit flexpde software

In this study, we first introduce the FlexPDE software. FlexPDE 
software is simple modeling software based on finite element method 
for coding. This means that FlexPDE is a finite element method for 
coding. This means that FlexPDE converts written codes and partial 
differential equations to a finite element model. FlexPDE performs all 
necessary functions for solving partial differential equations as follows. 
Editing and preparation of texts, creating finite element network (grid), 
finite element solver organization for answers, adjusting the graphical 
output to delivered results. FlexPDE is a software that does not have a 
predetermined range of issues. The user is free for selection of equation. 
In addition, unlike commercial software, there is no doubt about what 
is the deal because the text fully describes the system of equations and 
the problem ranges. Another advantage of FlexPDE software is that 
equations or phrases can be added based on problem requirements. 
The problems that FlexPDE is capable of solving. Problems such as first 
or second order partial differential equations in (one, two or three) 
dimensional Descartes and geometry, one-dimensional spherical or 
cylindrical geometry, sustainable or transition system [33], linear or 
non-linear equations [34-35], eigen values problems, and several other 
issues are the problems that this simple software is able to solve. In this 
software, boundary conditions are applied when defining the problem 
boundaries. The primary types of boundary conditions are boundary 
are NATURAL, VALUE. NATURAL boundary conditions determine 
the value of a variable on the boundary of the domain NATURAL 
boundary conditions determine the amount of charge on the boundary 
of the domain Problem definition is divided into different parts in 
FlexPDE software. Determining variables, determining the geometry 
of the problem, determining material properties, determining the 
graphical output, applying boundary conditions include the parts 

of this simple software. The coding rules in this software are that 
they are not sensitive to lowercase or uppercase. A differentiation 
such as  is shown like . All coordinate systems names are 
known valid such as second derivations like dxx (H) and differential 
functions such as Curl, Grad and Div. In this study, we compare 
the results of FlexPDE software with obtained results from HPM 
by writing FlexPDE software codes for Eqs. (6) and (7). For brevity, 
we evaluate only one case. For Figure 7, when (φ =0.03, δ=2, Ec 
=2, Pr=2), we have evaluated the velocity and temperature profiles. 
FlexPDE software codes for Eqs. (6) and (7) at (φ =0.03, δ=2, E =2, 
Pr=2) are given in Appendix A.

Results and Discussion
The comparison of the results of HPM with the results of the AGM, 

CM, Num and FlexPDE software results was conducted. Also, this 
research shows that AGM and HPM are powerful methods to solve 
non-linear differential equations.

Results of (HPM)

Figure 2

Figure 3

Figure 4

Comparison of numerical results with the results of (HPM)

Table 2

Table 3

Comparison of (CM) result with the result of (HPM)

Figure 5

Comparison of (CM) results and (AGM) results with the 
results of (HPM)

Figure 6

0.03

0.02

0.01

0

-0.01

-0.02

-1 -0.5 0 0.5 1

V
(x

)

X X
(a) (b)

φ=0.06
φ=0.08
φ=0.1

φ=0
φ=0.06
φ=0.08
φ=0.1

φ=0

-1 -0.5 0 0.5 1

0.4

0.2

0

-0.2

-0.4

θ(
x)

Figure 2: Effect of nanoparticle volume fraction (φ ) on (a) velocity profile (V(X)) and (b) temperature profile (θ(X)) when (Ec=1, =1, Pr=6.2).
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Figure 3: Effect of dimensionless non- Newtonian viscosity (  ) on (a) velocity profile (V(X)) and (b) temperature profile (θ(X)) when (Ec=1, φ =0.05, Pr=6.2).

( )V x ( )xθ

x Nu HPM Error         Nu HPM Error
-1 0.000000 -1.00e-12 1.00e-12 0.500000 0.500000 0.000000 

-0.8 2.49e-02 0.024978 -8.90e-05    0.404852 0.404687 0.000165
-0.6 0.034361 0.034499 -0.000138 0.307571 0.307541 2.94e-05
-0.4 0.316000 0.031771 -0.000171    0.210070 0.210225 -0.000150
-0.2 0.020505 0.020717 -0.000212    0.112157 0.112397 -0.000240
0.0 0.005037 0.005283 -0.000246 0.013034 0.013246 -0.000210
0.2 -1.09e-02 -1.07e-02 -0.000254 -8.77e-02 -8.76e-02 -0.000140
0.4 -2.35e-02 -2.32e-02 -0.000243 -0.189907 -0.189774 -0.000130
0.6 -2.85e-02 -2.83e-02 -0.000234 -0.292665 -0.292458 -0.000210
0.8 -2.19e-02 -2.17e-02 -0.000206 -0.395570 -0.395312 -0.00026
1 0.000000 1.00e-12 -1.00e-12 -0.500000 -0.500000 0.000000

Table 2: Comparison between Numerical results and HPM for V(x) and θ(x) when δ=1, Pr=6.2, ϕ=0.01, Ec=1.

( )V x ( )xθ
x Nu HPM Error         Nu HPM Error

-1 0.000000 2.00e-11 -2.00e-11 5.00e-01 0.500000 0.000000 
-0.8 2.64e-02 0.026707 -3.18e-04 0.412251             0.410966 1.28e-03 
-0.6 0.037801 0.038229 -4.28e-04 0.318437             0.317645 7.92e-04
-0.4 0.036652 0.037135 -4.83e-04 0.223868             0.223923 -5.43e-05
-0.2 0.026641 0.027227 -5.87e-04 0.128579             0.129006 -4.28e-04
0.0 0.011684 0.012360 -6.77e-04 0.030749             0.030992 -2.43e-04
0.2 -4.42e-03 -3.73e-03 -6.90e-04 -7.09e-02 -7.10e-02 9.29e-05
0.4 -1.78e-02 -1.72e-02 -6.59e-04 -0.176022 -0.176076 5.45e-05 
0.6 -2.44e-02 -2.37e-02 -6.60e-04 -0.282871 -0.282354 -5.16e-04
0.8 -1.96e-02 -1.90e-02 -6.13e-04 -0.390062 -0.389033 -1.03e-03
1 0.000000 0.000000 0.000000  0.500000            -0.500000 0.000000

Table 3: Comparison between Numerical results and HPM for V(x) and θ(x)  when δ=2, Pr=6.2, ϕ=0.07, Ec=2.
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Figure 4: Effect of Eckert number (Ec) on (a) velocity profile (V(X)) and (b) temperature profile (θ(X)) when (δ=1, φ =0.05, Pr=6.2).
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Figure 5: Comparison of HPM and CM results when (Ec=0.5, =0.5, Pr=0.5, φ =0.05).

Comparison of FlexPDE software results with the results of 
(HPM)

Figure 7 

In the present study, free convection of a non-Newtonian nanofluid 
between two infinite parallel perpendicular flat plates has been 
investigated. These equations were solved analytically using the HPM, 
CM and AGM. In order to verify the accuracy of the present results, we 
have compared HPM results with numerical methods (the fourth-order 
Runge–Kutta method) and FlexPDE software. Comparison between 
HPM and numerical method are presented in Tables 1 and 2. For brevity, 
only two models, when (Pr=6.2, Ec=1, φ =0.01, ) and (Pr=6.2, Ec=2, 
φ =0.07, ), are discussed for velocity and temperature profiles. 
As seen in these Tables 1 and 2, for different values of x in the range of 

[-1, 1] error rate is very low, which indicates the good complying between 
the two methods. Also in this study the effect of various parameters such 
as nanoparticle volume fraction (φ ), dimensionless non- Newtonian 
viscosity ( ) and Eckert number (Ec) on velocity and dimensionless 
temperature profiles examined. Figures 2a and 2b show the effect of
nanoparticle volume fraction (φ ) on the velocity and temperature
profiles when (Ec=1, =1, Pr=6.2). According to the Figures 2a and 
2b, by increasing nanoparticle volume fraction (φ ), the velocity and 
temperature profiles decline. Figures 3a and 3b, are shown the effect 
of dimensionless non-Newtonian viscosity ( ) on the velocity and 
temperature profiles, when (Ec=1, φ =0.05, Pr=6.2). The dimensionless 
non-Newtonian viscosity indicates the relative significance of the 
inertia effect compared to the viscous effect. According to the Figures 3a 
and 3b, by increasing dimensionless non-Newtonian viscosity ( ) velocity 
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and temperature profiles decline. The effects of the Eckert number 
(Ec) on velocity profiles and temperature profiles when (δ=1, φ =0.05, 
Pr=6.2) are shown in Figures 4a and 4b, respectively. It is observed that 
due to the increasing velocity and temperature Eckert number (Ec) 
increases, when we ignore viscosity dissipation, the minimum values 
for the velocity and temperature are achieved. Figures 5a and 5b show 
the comparison between the results of HPM and Collocation method. 
In these Figures, we investigated the velocity and temperature profiles, 
when (Ec=0.5,  =0.5, Pr=0.5, φ =0.05). The slight error between the 
Figures indicate the good complying between the two methods. Figures 
6a and 6b show the comparison between the results of HPM, AGM 
and Collocation method. In these figures we examine one mode of 
(Ec=0.1,  =0.2, Pr=1, φ =0.01) for velocity and temperature profiles. 
In accordance with the observed figures error is very low between 
the Figures, this means there is complying between the two methods. 

Figures 7a and 7b show the comparison between the results of HPM 
and FlexPDE. In these figures we examine one mode of (Ec=2,  =2, 
Pr=2, φ =0.03) for velocity and temperature profiles. The slight error in 
Figures indicate that HPM is a high accuracy method to solve these issues.

Conclusion
This paper has analyzed the phenomenon of free convection 

flow of a non-Newtonian nanofluid between two infinite parallel 
perpendicular flat plates using the HPM, AGM, CM and Num. The 
effects of the nanoparticle volume fraction (φ ), dimensionless non-
Newtonian viscosity ( ) and Eckert number (Ec) on the velocity and 
dimensionless temperature profiles have been determined for a silver 
and water nanofluid with a Prandtl number of Pr=6.2. The results of 
this study indicate that increasing in nanoparticle volume fraction 
(φ ) leads to the decrease in the thickness of the boundary layer of 
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Figure 6: Comparison of HPM, CM and AGM results when (Ec=0.1, =0.2, Pr=1, φ =0.01).
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the velocity and temperature. While increasing Eckert number (Ec) 
increases the velocity and temperature profiles. The results show that 
the HPM method hase excellent agreement with the fourth-order 
Runge-Kutta numerical Method (NUM) and FlexPDE software. As 
the most important result of this study it was observed that HPM and 
AGM are powerful methods to solve this kind of non-linear problems.

Appendix A

FlexPDE software codes:

Title ‘ Nanofluid between two parallel perpendicular flat plates’ 

Coordinates cartesian1 Variables V theta 

Definitions Ks=42 Kf=0.613 phi=0.03 Pr=2 Ec=2 delta=2

A= (Ks+2*Kf-2*phi*(Kf-Ks))/ (Ks+2*Kf+2*phi*(Kf-Ks))

Equations

V: dxx (V) +6*delta* (1-phi) ^2.5 * (dx (V)) ^2 * dxx (V) +theta=0 

Theta: dxx (theta) +Ec*Pr* (((1-phi) ^ (-2.5))/A) *(dx (V)) ^2 + (2) 
*delta*Ec*Pr*(1/A) *(dx (V)) ^4=0 

Boundaries region 1 start (-1) point value (V) =0 point value (theta) =0.5 

Line to (1) point value (theta) = (-0.5) point value (V) =0 

Plots elevation (V) from (-1) to (1) elevation (theta) from (-1) to (1) tecplot (V) 
Tecplot (theta)

End
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