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Abstract 
We are presenting a convergence study of the evanescent model and the polynomial model with and without 

the Effective Conduction Path Effect (ECPE). These analytic models of the electric potential in the channel are 
used to analyze the short channel effect for the submicronic Symmetric DG FD SOI MOSFET. In this paper, we 
figure out the 2D Poisson equation and we analytically write using the evanescent model, the surface potential, 
the threshold voltage, the DIBL and the sub-threshold swing. The natural scale length for the polynomial model 
λp and its corrected form λpc including the ECPE are mentioned. The results, of the analysis of the short-channel 
effects (SCEs), show a good agreement of the evanescent model and the polynomial model including the ECPE 
with measures done by simulation tools.

Keywords: Evanescent and polynomial models; Effective conduction 
path effect; Surface potential; Threshold voltage; DIBL; Sub-threshold 
swing; Symmetric double gate fully depleted SOI MOSFET

Introduction
The electronic industrial world is in continuous search for an 

amelioration of the speed and the consumed power of the MOSFET 
device. But, with the miniaturization of the shape, governed by the 
ITRS roadmap [1], this component has shown its defects due to the 
parasitic effects. Among these undesirable effects, the so called short 
channel effects (SCEs), which minimize the MOSFET performances [2] 
and perturb the IC function.

The microelectronic industrials have sought to avoid these defects. 
The MOSFET structure on silicon with multiple gates [3-6] has proved 
successful in increasing the duration of the miniaturization and 
improving the compound performances taking into consideration the 
preservation of the planar silicon technology.

Despite its complex technological realization, the Symmetric DG 
FD SOI MOSFET remains one of the most interesting and encouraging 
compound to realize the Ultra-Deep Sub-Micronic (UDSM) structure 
and throughout augment density of integration.

Many models [7-13] have been developed to examine the 
performance of components. In this paper, we will put the evanescent 
model and the polynomial model with and without the ECPE into 
consideration to find out their convergence points for the study of the 
SDG FD SOI MOSFET. We solve the 2D poisson equation and we, 
analytically, analyze the SCEs via the dispersion study of the surface 
potential and the threshold voltage along the channel as well as the 
DIBL effect and the sub-threshold swing. The natural scale length 
for the polynomial model λp and its corrected form λpc including the 
ECPE are mentioned. The analysis of the SCEs allows us to locate 
the convergence points of the utilized models. We confirm these 
convergence situations by simulator data and/or some measures. 

Evanescent Model
Surface potential and threshold voltage

Figure 1 illustrates the cross section of the symmetrical DG SOI 

MOSFET device under fully depleted conditions and the inversion 
charge is neglected in regard to that of the of the depletion. We define 
by L, distance between source and drain, the channel length. tox and 
tsi represent respectively the thickness of the frontal oxide and the 
silicon body thickness. Na is the silicon doping in the channel and Nd 
is the doping concentration of the source and drain regions. εsi and εox 
represent respectively the dielectric permittivity of the silicon film and 
the silicon dioxide.

The evanescent model supposes that the electrostatic potential 
in the silicon film, overlapped between both grids, is represented, 
according to the superposition principle, by φ(x,y) = φ1(x)+ φ2(x,y). φ 

1(x) is the solution of Poisson equation for a long channel and φ2(x,y)
is the solution of the Laplace equation and contain the short channel 
effect [14].
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The necessary boundary conditions of φ1 and φ2 to define φ(x) are 
as follow:
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Where φgf = Vgf-Vfb, VSL represents the surface potential for a long 
channel at = 

2
± sit

 ; Vfb is the flat band voltage at the interface grid oxide 
– poly-silicon substrate.

Cox =[𝜀ox/tox ] is the frontal oxide capacitance and Csi = [𝜀si/tsi ] is the 
silicon body capacitance.

For φ2:
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Where 2[ / . ( / )]=bi a d iV KT q Ln N N n  denotes the built-in voltage 
between the source/drain end.

The frontal surface potential is defined as:
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Where λe represents the characteristic length for the evanescent 
model and verify the follow equality:

sin( / 2 ) .cos( / 2 ). / 0λ λ λ− ∈ =si e e si e ox sit t C                 (3)

The threshold voltage is defined as a grid voltage (Vgf=Vth) for 
φsf=2∅B at y=y0 where [ / . ( / )]φ =B a iKT q Ln N n  is the Fermi potential 
in the channel and y0 is the minimum surface potential abscise. This 
leads to write Vth as the form:
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Where sγ denotes the short channel effects [15] and written as:
0
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The gradient of threshold voltage is defined as ∆Vth =Vth0-Vth where 
Vth0 denotes the threshold voltage for a long channel SDG FD SOI 
MOSFET and written as:
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DIBL parameter

For the SDG FD SOI MOSFET with short channel, the surface 
potential minimum increase with the drain bias. Thus, the short 
channel effect is attributed to the penetration of the electric field line, 
of the drain-channel junction, in the channel resulting in the potential 
barrier lowering (DIBL effect). This leads to the decreasing of the 
threshold voltage.

The ℜ parameter defined by ℜ=𝜕Vth/𝜕Vds evaluates the DIBL effect 
and written as:

1{sinh( / ) / sinh( / )}.λ λ γ −ℜ = e e Sy L  			                (6)

Sub-threshold swing

The sub-threshold slope, appealed swing, is defined as the grid 
voltage that modifies the drain current under a threshold of a decade 
and written as

1
(10) 0. . ( )γ −= =s

KTS Ln y y
q

  (7)

Where y0 is the minimum surface potential abscise.

Polynomial Model
Without the ECPE 

Taking into account the polynomial model which considers the 
conduction current is at the surface of the silicon body and supposes 
parabolically the electrostatic potential profile in the vertical direction 
[6,10].

2
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Using the classical boundary conditions:
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and writing the Poisson equation as ( / 2, )ϕ = ±sf six t y , we deduce 
the polynomial characteristic length 

1/ 2( . / 2 )λ ε=p si si oxt C   (9)

Including the ECPE

The notion of the ECPE supposes that the gravity centre of the 
conduction current is at x=deff . The presentation of the electrostatic 
potential ( ),ϕ x y  at x=deff allows us to bring about a correction to 
polynomial characteristic length λp.

Figure 1: Schematic cross section of a symmetric DG FD SOI MOSFET 
device.
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The new corrected characteristic length corresponding to the 
polynomial model including ECPE is:

2 1/ 2(1 . . )λ λ
ε ε

= + −ox ox
pc p eff eff

si si si

C Cd d
t

            (10)

The key factor deff, which illustrates the variation of scaling nature 
length λpc with substrate doping density, is so-called depth of the 
effective conducting path and it presents the location where the punch-
through current mainly occurs at subthreshold conduction with ECPE 
conducting mode [10]. 

The evanescent model and the polynomial model with and without 
the ECPE are utilized to analysis the short channel effect with the 
intention of searching the situations of their convergence. 

Results and Discussion
To verify the analytical models of the convergence of SCE’s, the 

graphs illustrating le surface potential, the threshold voltage, DIBL and 
swing were plotted, compared and verified by measurement data. The 
same work for the conventional MOSFET prove that the convergence 
situation for the evanescent model and the polynomial model including 
ECPE is at deff=0.5tsi [16] and at deff=0.35tsi [17] for the single-gate SOI 
MOSFET device.

For the three models, figure 2 shows the evolution of the 
characteristic length λi  (i=e, p or/and pc) as a function of ratio (tox/
tsi) for Na=4.1017cm-3, Vds=0.5V and for a large range of tsi (tsi=1,5 and 
10nm). We notice an adequate convergence, at deff=0.25tsi, between 
the evanescent model and the polynomial model including the ECPE. 
We also see that this convergence situation coincide with the data of 
equation 27 cited by Chen [13].

Figure 3 presents the evolution of the surface potential minimum 
and its position along the channel for the submicronic SDG FD SOI 
MOSFET device and for Vds=0.5 and 2.5V. The results, and on a large 
scale of drain bias, show a good agreement between the evanescent 
model and the polynomial model including the ECPE at deff=0.25tsi.

Figure 4 illustrates the evolution of the threshold voltage gradient in 
regard to the normalized position to L along the channel for L=150nm, 
Vds=1.5V, tox=1.5nm and for tsi=5, 10 and 25nm. These results prove a 
perfect agreement, at deff=0.25tsi, between the evanescent model and the 
polynomial model including the ECPE with Jaju’s measurements [11].

As the drain voltage increases, the channel barrier and the threshold 
voltage are reduced. This is called Drain Induced 

Barrier lowering. Figure 5 shows the evolution of the DIBL 
parameter as function of normalized position along the channel for the 
ultra-thin SDG FD SOI MOSFET with L=150nm, Vds=1.5V, tox=1.5nm 
and for tsi=5 and 10nm. Measures data [11] agree closely with the Figure 2: Characteristic length λi versus ratio (tox/tsi).

Figure 3: Minimum channel surface potential and its location y0 as a function 
of position along the channel for different values of drain bias.

Figure 4: Variation of threshold voltage gradient versus normalized position 
along the channel y/L.
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predictions of the evanescent model and the polynomial model 
including the ECPE at deff=0.25tsi. 

Figure 6 presents the sub-threshold swing parameter, in weak 
inversion, as a function of normalized position a channel length for 
tox=1.5nm, tsi=10nm, Na=1.1017cm-3 and Vds=1V [11] and for tox=1.5nm, 
tsi=20nm, Na=1.1016cm-3 and Vds=1V [18]. We notice an adequate 
convergence, at deff=0.25tsi, between the evanescent model and the 
polynomial model including the ECPE with Jaju’s measurements [11] 
as well as those of MEDICI’s [14]. 

Conclusion 
The study of the short channel effects through the surface potential, 

the threshold voltage, the DIBL and the sub-threshold swing has proved 
the convergence situation of the evanescent model and the polynomial 
model including the ECPE. The convergence situation for the ultra-
thin SDG FD SOI MOSFET’s device is at deff=0.25tsi.
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