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Abstract

Recently a great deal of progress has been made in our understanding of pulmonary hypertension (PH).
Research from the past 30 years has resulted in newer treatments that provide symptomatic improvements and
delayed disease progression. Unfortunately, the cure for patients with this lethal syndrome remains stubbornly
elusive. With the relative explosion of scientific literature regarding PH, confusion has arisen regarding animal
models of the disease and their correlation to the human condition. This short review uniquely focuses on the clear
and present need to better correlate mechanistic insights from existing and emerging animal models of PH to
specific etiologies and histopathologies of human PH. A better understanding of the pathologic processes in various
animal models and how they relate to the human disease should accelerate the development of newer and more
efficacious therapies.

Keywords: Pulmonary hypertension; Right heart failure; Therapy;
Animal model

Introduction
Pulmonary hypertension (PH) refers to a mean pulmonary artery

pressure at rest of greater than or equal to 25 mm Hg or greater than
30 mm Hg with exercise [1]. PH may arise as an idiopathic disorder, or
more commonly, associated with secondary causes [2] and is a major
worldwide health burden [3]. Sadly, there remains no cure despite
major advances in our understanding of the pathogenesis of PH with
respect to genetics [4], vasoreactivity [5], inflammation [6], and cell
and molecular biology [7].

On a more positive note, the last 30 years of research in PH has
been nothing less than stunning in its breadth and depth of insight.
This is evidenced by a dramatic increase in survival time and quality of
life for patients with PH [8], brought about largely by incorporation of
vasodilatory therapies developed from the research [5]. These
advances have ushered in a “renaissance period” of biomedical
research aimed at understanding and better treating PH. As a
testament to this, a PubMed search using date restrictions and with the
search terms “pulmonary hypertension therapy” shows that in 1979
there were 11 published reviews, and only 6 in 1980. In 2013, there
were 247! While this is certainly dramatic quantitatively it may be too
early to assess some of the qualitative aspects of such a spectacular
increase in the scientific literature specific to PH. The enormity of the
literature regarding PH and the proliferation of new journals
publishing heart lung biomedical science are both potentially
contributing to difficulties moving the field ahead towards the goal of
better therapies. With this review we attempt to highlight some of
these problems and to bring into sharper focus potential correlations
between specific preclinical models to specific forms of human PH.

Finally, we humbly submit process-based recommendations to our
“PH community” of clinicians, basic and translational researchers,
biotech and biopharma colleagues, with the goal of increasing the
efficiency of our collective efforts to find a cure.

PH and the WHO Classification System
In 2008, the 4th World Symposium on Pulmonary Hypertension

meeting at Dana Point, California [9] produced an updated clinical
classification system for PH [10]. This system was based on earlier
world symposia on PH in 1998 and 2003 [11]. As can be seen from
Table 1, PH represents a very broad spectrum of disease etiology and
pathobiology affecting not only the lungs and right ventricle directly,
but also secondarily through other organ pathologies. Group I is
pulmonary artery hypertension (PAH), Group II is PH associated with
left heart disease, Group III is PH associated with lung disease and/or
hypoxia, Group IV is PH associated with chronic thromboembolic
disease, and Group 5 is PH associated with multifactorial mechanisms.
Even within a single classification group, there are distinct mechanistic
programs that contribute to PH, either on the arterial or venous side of
the pulmonary circulation. It is obvious that no single preclinical
model could be generated that would serve as an excellent surrogate to
study the pathogenesis of PH, with the possible exception of high
altitude PH modeled by chronic exposure to hypobaric hypoxia. It
seems logical that to push forward the development of our
understanding of human PH and to develop better therapies, more
animal models need to be developed that recapitulate specific
pathologies in ways that mirror the classification system for human
PH.
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Preclinical Models: Correlations to the Classification
System

As can be seen, PH is not so much a specific disease entity as it is a
syndrome that may result from a number of disparate pathobiological
states. Although in general, no one animal model of PH recapitulates
all aspects of the severe pathology of human disease [12], these
experimental models support the idea that PH is elicited by variable
stimuli and that the structural changes observed in the pulmonary
vasculature are related to the type of inciting event [13]. The chief
histological features of pulmonary hypertensive vascular disease in
humans and in animal models have been summarized elsewhere [12].
The following review of preclinical models is by no means exhaustive,
but is instead meant to familiarize the reader with the main themes in
the models. In mice, the classic model of chronic hypoxia produces PH
with some variability across strains [14]. The development of PH is
associated with varying degrees of mild to moderate muscularization
of small pulmonary arterioles, likely due to hypertrophy and/or mild
hyperplasia of smooth muscle cells (SMC). Adventitial thickening and
infiltration by inflammatory cells into the adventitia are noted. These
hypoxia-induced vascular changes are indeed mild and much less
robust than in rat hypoxic PH models and reflect gene expression level
differences [15]. Newer models in mice have begun to exploit the
species’ capacity for genetic manipulation. For example, mice that are
mutant for bone morphogenetic protein receptor type 2 (BMPR2), the
most common gene mutated in human PAH to date [16], develop a
mild PH in hypoxia [17]. Conditional deletion of endothelial cell
BMPR2, while avoiding embryonic lethality, resulted in varying RV
hypertrophy and vascular remodeling [18], implying that BMPR2 loss
is neither necessary nor sufficient for PH and RV failure [14]. Other
genetically engineered mice have been generated that examine
immune dysfunction. Mice that over-express interleukin- 6 (IL-6)
develop severe PH, neointimal proliferation, and RV hypertrophy
upon chronic hypoxia exposure [19]. In humans with systemic
sclerosis, PAH is one of the leading causes of death [20].

In mice transgenic for Fra-2 (Fos-related antigen-2, a Jun/Fos
transcription factor family member), increases in metalloprotease
activity and PASMC proliferation are exaggerated and contribute to
pulmonary vascular remodeling [21]. Mice with mutations in
vasoactive genes are also models of PH, as is the case for the moderate
PH and RV hypertrophy observed in mice lacking vasointestinal
peptide [22]. It should be noted that the gender differences in the
incidence of human IPAH [3], are observed in at least one preclinical
model used for the study of PH. For example, in mice overexpressing
S100A4/MTS-1/FSP-1, increased right ventricular systolic pressure is
observed [23]. In approximately 5% of these mice, pulmonary vascular
remodeling and the development of plexiform-like lesions occurs,
almost exclusively in females [24]. Although beyond the scope of this
review, the reader is directed towards excellent reviews on the subject
of gender differences and PH [25,26].

Mouse models have begun to explore the role of the immune system
in the pathogenesis of PH. Schistosomiasis-associated is one of the
most common causes of PAH worldwide, with an estimated ~ 200
million infected persons of which about 1% develop the disease [27].
In mice with schistosomiasis-PAH, granulomatous lesions and
pulmonary vascular remodeling is heterogeneously localized in the
lung [28], and appears to require transforming growth factor beta and
IL-4/IL-13 signaled myelomonocytic cells [29]. Fulminant Th2
inflammatory responses and vascular remodeling in the lung have also
been examined in mice sensitized with ovalbumin and further

challenged in the airways [30] and with ovalbumin or Aspergillus
antigen challenge in the peritoneal cavity [31]. Much of the
histopathology in these models seems to be most prevalent in the more
proximal airways and pulmonary vessels, in addition to changes at the
level of resistance vessels. Intriguingly, the Th2 response determines
the extent of pulmonary vascular remodeling, is sufficient to cause the
lung remodeling, and may share common disease pathways and
mediators with chronic hypoxia PH [32].

An excellent summary table of mouse models from 1996-2011 and
their respective pathologies is available [14]. Rats have been used for
decades to study PH, particularly the chronic hypoxia and
monocrotaline (MCT) models. Exposure of rats to hypobaric hypoxia
causes a doubling of mean pulmonary artery pressure, progressive
structural change in the pulmonary vasculature, is attended by influx
of inflammatory cells (predominantly myeloid lineage), but RV failure
is absent [3]. Strain differences are well appreciated, with the prime
example of the fawn-hooded rat, which develops more severe PH and
remodeling than most other strains when exposed to hypoxia [33].
MCT is a toxic alkaloid that has been used to induce experimental
PAH for decades [34]. MCT causes a widespread pneumotoxicity [35]
that is reflected as a increased index of cell proliferation, which varies
in time and space among the vascular and airway structures, from
alveolar regions to larger bronchovascular structures [36]. Sugen 5416
vascular endothelial growth factor receptor 2 (VEGFR2) blockade, in
combination with hypobaric hypoxia (Su-Hx), induces a severe PH
with elements of inflammation and angio-obliteration culminating in
RV failure [37]. The underlying mechanism is thought to involve
primarily pulmonary artery endothelial cell death followed by the
emergence of an apoptosis-resistant cell [38]. Interestingly, Su-Hx rats
returned to normoxia (Su-Hx-Nx) for 10-11weeks develop neointimal
lesions closely resembling human plexogenic arteriopathy [39]. The
possibility that these neointimal lesions may be reversible [13,40], that
they do not fully recapitulate human plexiform lesions [13], and the
lack of death from RV failure development among some research
groups (for example, “a few out of ~ 300 rats” [41]), warrants further
detailed investigations. This report clearly demonstrates that the
plexiform lesions develop in this rat model at very late stages, leading
the authors to conclude that sustained exposure to high blood pressure
may be the major factor required for their development [41]. This
raises the possibility that the emergence of apoptosis-resistant and
hyperproliferative EC by SU5416 is the result of exposure to high shear
stress secondary to the pulmonary arterial remodeling [38]. Rat strain
susceptibility, as in hypoxia alone, may explain differences in the
incidence of RV failure in this model.

Newer rat models of PH have recently been published. As in mice,
Th2 mediated inflammation leads to pulmonary vascular remodeling
that can be quite severe. Sugen 5416 blockade in combination with
ovalbumin sensitization produced a robust angio-proliferative PAH
that was preventable by 1) caspase inhibition, 2) dexamethasone, and
3) B lymphocyte depletion [42]. In contrast to the Th2 mouse models
described above, Th2 inflammation and remodeling in the rat lung is
associated with severe PAH [42]. Recently, a rat model of moderate
PAH (~40 mm Hg or greater) was generated by passive transfer of
autoantibodies purified from the plasma of MCT rats [43]. This was
associated with pulmonary vascular remodeling, including intimal
occlusion but without plexogenic arteriopathy. Intriguingly, bronchus-
associated lymphoid tissues appeared to play a major role in the
generation of autoantibodies [43]. Collectively, these models promote
the idea that both the airways and the immune system are potentially
important players in pulmonary vascular remodeling, thus deserving
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further study. With regard to the airways, a recent review summarized
the current experimental and clinical findings that establish linkage
between airway responses (ex: antigens, pollution) and the lung
vasculature [44]. In any case, the possibility that the airways contribute
somehow to certain forms of PH is beginning to be robustly explored.

Ungulates, such as cows and sheep, have served as excellent models
for PH. Seminal studies of the effects of high altitude in these animals
conducted several decades ago established many of the fundamental
tenets of cardiopulmonary biology [45]. Generally speaking, cattle
exposed to hypoxia develop severe PH, while sheep do not [45].
Neonatal calves are particularly sensitive to chronic hypobaric
hypoxia, and exhibit remarkable intimal thickening of the media and
adventitia of pulmonary vessels with mononuclear cell infiltration. As
is the case for rodents exposed to chronic hypoxia, these changes are
reversible [3]. Gene expression and single nucleotide polymorphism
studies in cows may provide clues as to genetic predisposition to high
altitude PH [46]. Along with their many positive attributes as models
of PH, large animals are uniquely challenging in many respects. For
example, the performance of cell lineage tracing studies, or the testing
of potential therapies are difficult given that large size and cost are
prohibitive for many researchers. Overcoming such obstacles may be
of great benefit to the understanding of the pathogenesis of PH.

A great deal of literature is available focusing on pulmonary artery
hypertension, sometimes called ascites syndrome, in broiler chickens
[47]. The broiler chicken model has been investigated for decades with
regard to nearly every aspect of the pathobiology of human PH:
vasoactive mediators [48], genetic susceptibilities [49], microparticles
[50], plexogenic arteriopathy [51], right heart failure [52],
inflammation [53], lipopolysaccharide exposures [54], myeloid cell
biology [55], and serotonin [56]. One of the reasons why broiler
chickens are so sensitive to the development of PH is the rate of rapid
growth from chicks to adults. In an 8-week span, a 40 g chick develops
into a 4,000g broiler, the equivalent of a 3 kg human newborn baby
weighing 300 kg after 2 months [47]. Several investigations
(summarized in [47]) point to the lack of pulmonary vascular capacity
in chickens compared to humans. Despite extensive investigations into
these areas and findings in the model that are very close to human
PAH, this literature is predominantly cited by those in poultry sciences
and almost never cited by other investigators (M. Yeager, unpublished
Web of Science Citation Index v.5.13.2 search, April 23, 2014, search
terms: pulmonary, hypertension, chicken).

As can be seen in Table 1, PAH can be associated with human
immunodeficiency virus infection (HIV) (Group 1.4.2). The incidence
of PAH is much higher in HIV-infected individuals, and its
pathogenesis has been recently reviewed [57]. Macaque monkeys
infected with SHIV-nef (a chimeric viral construct containing the HIV
nef gene in a simian immunodeficiency virus [SIV] backbone) develop
complex plexiform–like lesions [58]. These lesions appear very similar
to those found in patients with HIVPAH [59]. Whether the pulmonary
vascular remodeling in the SHIV-nef model is associated with PAH
and/or contributes to RV failure is unknown, but evidence for RV
hypertrophy was absent [58].

Several animal models are available to study congenital
abnormalities and pulmonary hypertension in children. Congenital
diaphragmatic hernia (CDH) occurs in about 1 in 3,000 births and is
associated with pulmonary hypoplasia and persistent pulmonary
hypertension [60]. Surgical approaches [61], pharmacologic
approaches [62], and genetic models [60] are in use to study the
development of CDH-PAH. The lung histopathology in preterm

baboon and preterm lamb models appears to closely recapitulate the
histopathological appearance of preterm infants with
bronchopulmonary dysplasia (BPD) [63]. Congenital heart diseases in
which pulmonary blood flow increases commonly lead to the
development of pulmonary hypertension [64]. An excellent model for
this has been developed by Fineman et al. in which an aortopulmonary
shunt is created in late gestation fetal lambs [65]. By 1 month of life,
shunted lambs reproduce the salient features of the human disease,
namely postnatal pulmonary hypertension, increased pulmonary
blood flow, and vascular remodeling [65]. The mechanisms that impel
the disease in the lambs is largely attributed to reactive oxygen and
reactive nitrogen species that drive the dysregulation of key signaling
pathways in pulmonary artery endothelial and smooth muscle cells
that leads to remodeling and increased pulmonary artery pressure
[64]. Similar results have been published using a piglet model of PAH
with right heart failure caused by prolonged overcirculation via an
anastomosis between the left innominate artery and the pulmonary
arterial trunk [66]. In this model, the development of PAH is
speculated to be propelled by dysfunction of voltage-gated potassium
channels, angiogenic factors, and inflammation [66,67]. Chronic
thromboembolic pulmonary hypertension (CTEPH) is caused by
persistent organized clots in the pulmonary arterial tree and results in
distal pulmonary vasculopathy [68]. The disease is thought to involve
two compartments in the lung, the obstructed vascular bed and those
unobstructed beds presumably exposed to higher fluid forces [68].
CTEPH is difficult to model since thrombi are notoriously fleeting due
to the robust fibrinolytic capacity of the pulmonary vasculature [69].
The distal pulmonary vasculopathy found in CTEPH is similar to that
seen in IPAH [70]. Recently, an excellent review of rat, mouse, pig, and
primate models for CTEPH, with their strengths and weaknesses has
been published [71].

To summarize, all preclinical models of PH share some common
pathologies while also displaying unique differences. In Table 2, we
remind the reader of the current histopathological classification
system, which has continually developed out of the pioneering work of
Wagenvoort [72,73] and Heath and Edwards [74]. In Table 3 we have
attempted to correlate these pathologies to those of human PH and
within the current classification system. Some models, such as the
MCT rat, defy simple categorization because of multiple organ
pathology, and/or complex and mixed histopathology.

Matching Rodent Models of PH to Human PH
Several recently published reviews regarding PH summarize novel

and emerging therapies [75,76], pathology [13], clinical trial designs
[77], and cell type-specific contributions to the disease process [78]. As
a thought experiment in therapy development for PH, in the following
section we compare and contrast the two most common animal
models of PH. Currently, the aim of the majority of therapies for PH is
increased pulmonary vasodilatation [75]. Many of the emerging
therapies target inflammation and intracellular signaling pathways
potentially operational in PAEC, PASMC and pulmonary artery
fibroblasts [78]. In the past ~10 years, a hypothesis of pulmonary
artery endothelial cell death and subsequent resistance to apoptosis
and exuberant proliferation has been favored [79]. As such, the focus
on PAEC and PASMC has only intensified. This hypothesis, which
one of us has helped in small ways to push forward [80], is based on
studies in human lung tissue from patients with PAH focusing on the
plexiform lesion and in occlusive neointimal lesions more generally
[81]. These data appear to be substantiated by studies in the MCT and
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Sugen-hypoxia rat models in which PAEC and PASMC proliferation
have been noted [3]. However, in the MCT model there is widespread
pneumotoxicity [82], including airway and alveolar dysfunction
[83,84], a feature also noted in human PAH [85,86]. To date, very few
studies, if any, have explored the possibility that early bronchial
epithelial cell death could contribute to the pathobiology in this model.
Indeed, there may be substantial cell death at the level of the bronchus
as well as the alveolus that occurs within 1-2 days after MCT
administration (M. Yeager, unpublished observations). As a side note,
the contribution of the hepatosplenomegaly seen in MCT rats, despite
its nearly universal finding across studies, has never been
mechanistically explored either. PAEC and PASMC apoptosis is of
course observed, which led to the hypothesis that these cell types are
likely the principal players in the disease process. However, it cannot
be overstated that the MCT model represents a complex multi-organ
disease process that culminates in PAH and RV failure [3]. The fact
that so many therapeutic approaches appear to prevent and even
reverse MCT PAH has been used to disdainfully criticize the model as
a poor approximate for human PAH. A closer examination of these
data reveals that most of the studies sacrificed the rats at ~ 4-5 weeks
post MCT administration to reveal a lower grade of cardiopulmonary
pathology (but still on a spectrum of pathology) and thus declared
essentially as “cures”. Future studies should allow for MCT rats (or any
animal model of PH) that are treated therapeutically to live out longer
to test the true durability of the approach. Finally, it must be
acknowledged that apoptosis of cells other than PAEC and PASMC
may be critically important to the appropriate interpretation of data.
For example, if an apoptosis inhibitor is used to reverse MCT PH, is
the effect primarily upon PAEC and PASMC, or might other affected
cell types be as or more important? These cells and the molecular
pathological underpinnings may represent an untapped wealth of
potential therapeutic targets.

The Sugen-hypoxia model is an important preclinical model of
PAH [37], with many of its most salient features having been
replicated repeatedly by numerous research groups. Several studies
and reviews conclude that the pathological lesions present in the distal
vasculature of the Su-Hx rats are “indistinguishable” from those in
human PAH (summarized in [3]). However, recent reports directly
assessing the pathology conclude that even the Su-Hx model lesions do
not fully recapitulate plexogenic lesions in humans [13]. In summary,
the findings that 1) in humans there is a spectrum of pathological
change in the pulmonary vasculature even in “normal control” lungs,
2) ~ 70% of human PAH is associated with occlusive neointimal
lesions [87,88] and are therefore not a requirement for PAH, 3)
severity of PAH in the Su-Hx model does not directly correlate with
the extent of occlusive lesions [13], and 4) the Su-Hx rat model may be
reversible upon return to normoxia [13], reinforce the notion that the
Su-Hx model, as is the case for any preclinical model, is best suited to
study some forms of PAH and not ideally suited for others (as has
been suggested previously [89]). Along a similar line of argument, as
MCT rats do not recapitulate plexiform-like lesions, it may be unwise
to study them for that purpose. However, the changes observed in the
more proximal bronchovascular structures of MCT rats, including
formation of active tertiary lymphoid tissues [43], very closely
replicates some forms of human PH [90]. Recently, it was reported
that idiopathic PAH recurred in a patient approximately 12 months
following lung transplantation (Narula et al., CHEST, 2014;
145(3_Meeting Abstracts:624A). This finding, and others like it
following lung transplants in IPAH (Muzaffar et al., CHEST, 2008;
134(4_Meeting Abstracts:c16002) and chronic granulomatous lung

disease [91], if confirmed by larger, published studies, would call into
question the assumption that the lung itself is the principal source of
the disease process. Considering the medical axiom “ablata causa
tollitur effectus” (if the cause is taken away, its effect will disappear),
the assumption that there must be a lung-specific origin of the disease
may be inappropriate, at least in some cases. Although the data are
very limited, these studies point to the possibility that in IPAH, where
there is no other obvious ongoing disease process, the phenomena of
cell proliferation, apoptosis resistance, and pulmonary vascular
remodeling may not be central drivers of the disease but are
manifestations of a disease originating outside of the lung that
somehow preferentially targets the lung and possibly the right
ventricle.

Specific Recommendations
We share the collective goal of delivering improved therapies,

preferably custom tailored to a PH patient’s particular apparent
etiology. To accomplish this, it is our belief that several key changes
(numbered in parentheses that follows) need to occur within the PH
biomedical community.

(1) We assert that there is a need to increase the communication
between basic scientists and clinicians in the workshops and symposia
involved in the development and testing of new therapies for PH. Such
contributions would hopefully lead to a more pervasive and
comprehensive understanding of the latitude of lung, RV, and other
organ injuries in the preclinical models.

(2) To do this, it is imperative for us to (more) closely document,
compare, and contrast the pathobiological findings of the preclinical
models. Doing so will more dramatically reveal similarities and
differences in PH across the models in ways that mirror the differences
observed in human PH.

(3) This will require research groups to adhere to the highest ethical
standards of research practice, and more fully disclose the number of
animals in experimental groups, the extent to which the investigators
looked at specific effects (proliferation, apoptosis, etc.) in the lung and
RV, and perhaps other organ systems, and the consistency of the
findings.

Research findings submitted for publication and/or presented at
conferences should be constructively evaluated by the PH scientific
community, with an eye towards

(4) Placing the experimental results in the context of the preclinical
models used vis-à-vis human PH. As a research community, of course
we need to work towards new avenues of research but we should never
discount the value of

(5) Validating (or not validating) other groups’ findings. Such
efforts, whether they are in agreement or disagreement with other
studies, should be welcomed for publication. Going forward, our goal
of developing novel, personalized, and more efficacious therapies will
be expedited by

(6) Presenting data with a clear rationale for the preclinical model
chosen (as has been suggested previously [89]), and framing the
interpretation of the main findings in as accurate and complete
historical context as possible.

With the advent of so many new journals, as well as the huge
increase in the number of PH publications per year, the production
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and dissemination of high quality research will likely prove a
formidable challenge.

1. Pulmonary Arterial Hypertension (PAH)

1.1. Idiopathic (IPAH)

1.2. Heritable/familial (FPAH) 1.2.1. BMPR2

1.2.2. ALK1, Endoglin

1.2.3. Unknown

1.3. Drug and toxin-induced

1.4. Associated with (APAH)

1.4.1.Conective tissue disorders

1.4.2. HIV infection

1.4.3. Portal hypertension

1.4.4. Congenital heart diseases

1.4.5. Schistosomiasis

1.4.6. Chronic hemolytic anemia

1.5. Persistent pulmonary hypertension of the newborn (PPHN)

1’. Pulmonary veno-occlusive disease (PVOD) and pulmonary capillary hemangiomatosis (PCH)

2. Pulmonary hypertension with left heart disease

2.1. Systolic dysfunction

2.2. Diastolic dysfunction

2.3. Valvular disease

3. Pulmonary hypertension due to lung diseases and/or hypoxia

3.1. Chronic obstructive pulmonary disease (COPD)

3.2. Interstitial lung disease

3.3. Other pulmonary diseases with mixed restrictive and obstructive pattern

3.4. Sleep disordered breathing

3.5. Alveolar hyperventilation disorders

3.6. Chronic exposure of high altitude

3.7. Developmental abnormalities

4. Chronic thromboembolic pulmonary hypertension (CTEPH)

5. Pulmonary hypertension with indistinct, multi-factorial mechanisms

5.1. Hematological disorders (e.g. myeloproliferative disorders, splenectomy, hemoglobinopathies)

5.2. Systemic disorders (e.g. sarcoidosis, pulmonary Langerhans cell histocytosis, lymphangiomatosis)

5.3. Metabolic disorders (e.g. glycogen storage disease, Gaucher’s disease, thyroid disorders)

5.4. Others (e.g. tumoral obstruction, fibrosing mediastinitis, chronic renal failure and dialysis)

Table 1: Current Classification for Pulmonary Hypertension [2]
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Group 1: PAH

1.1–1.4. Pulmonary plexogenic arteriopathy

Early phase:

● Medical hypertrophy

● Cellular intimal proliferation of muscular pulmonary arteries

● Appearance of muscle in normally nonmuscular arteries

Late phase:

● Concentric laminar intimal fibrosis

● Loss of luminal vascular volume

● Dilatation lesions (vein-like branches, angiomatoid lesions)

● Plexiform lesions

● Recanalization of arteries

● Fibrinoid necrosis

● Arteritis

Group 1’: PVOD

● Foci of intense congestion of pulmonary parenchyma

● Patchy hemosiderosis associated with areas of congestion

● Encrustation of elastin with iron and calcium salts in congested areas

● Duplication of elastic laminae

● Obliterative fibrosis of small veins and of venules, associated with congested areas

● Abnormalities set against a background of normal or near normal lung tissue

● Prominence of capillaries, associated with increased numbers of capillaries, often blurring the distinction from pulmonary capillary hemangiomatosis (group 1.4.2)

Group 1’: PCH

● Marked increase and prominence of capillary vessels in alveolar walls, interlobular septa, bronchovascular bundles, and pleura; masses of capillaries may bulge into
lumina of airways and vessels

● Associated features of PVOD in some cases

Group 2: Pulmonary hypertension with left heart disease

● Arterialization of large or middle-sized pulmonary veins

● Interstitial edema and fibrosis

● Hemosiderosis

● Medial hypertrophy and adventitial thickening of pulmonary arteries

Group 3: Pulmonary hypertension associated with lung disease and/or hypoxemia

3.1 and 3.3–3.5. Hypoxic pulmonary vasculopathy

● Intimal proliferation; adventitial thickening

● Medial hypertrophy of muscular pulmonary arteries and arterioles, especially of smaller branches

● Longitudinally oriented intimal smooth muscle cells

● Slight medial hypertrophy of veins
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3.2. Pulmonary vasculopathy associated with interstitial lung disease

● Features of hypoxic pulmonary vasculopathy

● Eccentric intimal fibrosis of arteries and, to a lesser extent, veins

Group 4: Pulmonary hypertension due to chronic thrombotic and/or embolic disease

● Thromboembolic obstruction of distal pulmonary arteries

Eccentric intimal fibrosis

Recanalized organized thrombi forming bands and webs

Fresh thrombi very rare

Nota bene: lesion may be focal, requiring extensive search in multiple sections

● Nonthrombotic pulmonary embolism

Nonthrombotic material or tissue (foreign bodies, bone marrow)

Fat embolism: many dilated optically empty blood vessels (down to capillary size)

Group 5: Miscellaneous [sarcoidosis, compression of pulmonary vessels (adenopathy), tumor, fibrosing mediastinitis]

● Heterogeneous group of disorders, some showing the features of congestive vasculopathy, some with features of post-thrombotic vasculopathy, some with
combinations

Table 2: Major Histopathological Features of Pulmonary Hypertensive Vascular Disease by Dana Point 2008 Clinical Classification [3]

Human Animal Model

Group 1: PAH

Early phase:

● Medical hypertrophy

● Cellular intimal proliferation of muscular pulmonary arteries

● Appearance of muscle in normally nonmuscular arteries

OVA/Asp challenge mice; Su/OVA rat

BMPR2 mutant mice; VIP-/- mouse

Su-Hx; CDH/PPHN baboon/lamb

MCT rat; Autoab transfer rat

S100A4/MTS-1 over expressing mouse

Fra2 Tg mouse; IL-6 over expressing mouse

Schisto mouse; Neprilysin null mouse

Late phase:

● Concentric laminar intimal fibrosis

● Loss of luminal vascular volume

● Dilatation lesions (vein-like branches, angiomatoid lesions)

● Plexiform lesions

● Recanalization of arteries

● Fibrinoid necrosis

● Arteritis

Broiler chicken

Su-Hx-Normoxia

S100A4/MTS-1 over expressing mouse

MCT pneumonectomy rat

SHIV-nef

Group 1’: PVOD

● Foci of intense congestion of pulmonary parenchyma

● Patchy hemosiderosis associated with areas of congestion

● Encrustation of elastin with iron and calcium salts

● Duplication of elastic laminae

● Obliterative fibrosis of small veins/venules

● Abnormalities set against a background of near normal lung

● Prominence of capillaries

MCT?

Su-Hx?

Group 1’: PCH
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● Marked increase/prominence of capillary vessels in alveoli interlobular septa, bronchovascular
bundles, and pleura; masses of capillaries may bulge into lumina of airways and vessels

● Associated features of PVOD in some cases

Group 2: Pulmonary hypertension with left heart disease

● Arterialization of large or middle-sized pulmonary veins

● Interstitial edema and fibrosis

● Hemosiderosis

● Medial hypertrophy/adventitial thickening of pulmonary arteries

Group 3: Pulmonary hypertension associated with lung disease and/or hypoxemia

3.1 and 3.3–3.5. Hypoxic pulmonary vasculopathy

● Muscularization of arterioles

● Medial hypertrophy of muscular pulmonary arteries

● Longitudinally oriented intimal smooth muscle cells

● Slight medial hypertrophy of veins

3.2. Pulmonary vasculopathy associated with interstitial lung disease

● Features of hypoxic pulmonary vasculopathy

● Eccentric intimal fibrosis of arteries and, to a lesser extent, veins

Broiler chicken

Chronic hypoxia-Neonatal calf

Su-Hx rat

Fawn Hooded rat

Chronic hypoxia-mouse

Chronic hypoxia-rat

Chronic hypoxia + MCT rat

Group 4: Pulmonary hypertension due to chronic thrombotic/embolic disease

● Thromboembolic obstruction of distal pulmonary arteries

Eccentric intimal fibrosis

Recanalized organized thrombi forming bands and webs

Fresh thrombi very rare

● Nonthrombotic pulmonary embolism

Nonthrombotic material (foreign body/bone marrow)

Fat embolism

Vena cava ligation + thrombi-pig, rat, primate

Vena cava ligation + stenosis-mouse, rat,

De-endothelialization + 50-80% jugular vein

stenosis-pig

Group 5: Miscellaneous [sarcoidosis, compression of pulmonary vessels (adenopathy), tumor,
fibrosing mediastinitis]

● Heterogeneous group of disorders, some showing features of congestive vasculopathy, some
postthrombotic vasculopathy

Table 3: Correlation of Histopathological Features of Human Pulmonary Hypertensive Vascular Disease to Preclinical Models Human Animal
Model
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