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Introduction
During drilling, it is important to get enough information on 

the formation to be drilled in advance for optimizing drilling bit 
selection [1], lost circulation prediction [2], drilling parameter 
optimization, shale problem prevention, and wellbore stability issues. 
With increasing complexity in the formations to be drilled, lithology 
prediction becomes crucial to drilling bit optimization [3]. The most 
common and costly drilling problem that has been always experienced 
by drilling engineers is the loss of circulation. It imposes huge expenses 
to the oil companies because of either drilling fluid supplement or 
subsequent drilling problems like pipe sticking [4]. Also wellbore 
instability is one of the important issues that can be vital when active 
shale layers are presented in the wellbore. Each one of these problems 
can cause spending millions of dollars to cure. It is known that there 
are close relationships between formation lithology and log data [5]; 
however, it is impossible to get well-defined expressions, due to high 
nonlinearity and complication in their relationships. The conventional 
methods provide inaccurate means to make lithology prediction under 
these conditions [3,5-8].

Neural network can establish complicated non-linear mapping 
between inputs and outputs. Using a neural network, we can compound 
the simple non-linear function by N times to get the conversion between 
complicated functions. A Back-Propagation (BP) network, one of the 
most common neural network structures, with strong learning ability, 
fault tolerance and anti-jamming ability, can be used to analyze the 
relationships between lithology and real-time drilling data. In this 
paper, formation type and lithology of the formation were predicted 
using real-time drilling data with an acceptable accuracy.

Approach
Several methods have been developed for finding formation type 

and lithology during or after drilling. One of these methods is collecting 
cutting from the shale shaker and having them analyzed by geologist. 
In this method, it is not possible to determine lithology exactly when 
a rock is being drilled and in fact one can determine the lithology after 
reaching cuttings to the surface. But in some situation by specifying 
the formation or lithology we can prevent some of drilling problems. 

For example when formation changes from a high pressure one to a 
low pressure one, it can lead to kick and blow out if this change is not 
determined very soon. 

Another method for determining lithology is using logging. Also 
it is clear that we can run a log after drilling a hole and the problems 
previously mentioned still exists. Another method is using from near 
well data. Although this method is better than the former ways but it 
can be accompanied by some great uncertainties. 

In this work, we introduce neighbor well data in conjunction with 
real-time drilling data of current well to artificial neural networks to 
find out formation type and lithology of a layer exactly when it is being 
drilled.  

Artificial Neural Networks 
Artificial Neural Networks are loosely based on biological neural 

systems, in that they are made up of an interconnected system of nodes 
[9] and recently have attracted widespread attention [10]. It can be
tracked back in researches to the early 1950s by McCulloch et al. [11].
Rosenblatt [12] has invented the perceptron and approximately at the
same time, Widrow [13] developed a similar network called Adeline.
Afterward, Minskey et al. [14] showed that even lots of elementary
calculations cannot be solved by single layer perceptrons.

Rosenblatt [12] also studied structures with more layers and 
believed that they could overcome the limitations of simple perceptrons. 
However, no learning algorithm was known yet that could determine 
the weights necessary to implement a given calculation and most of 
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the computer science community left the neural-network paradigm 
for 20 years [15]. But in the early 1980’s, Hopfield et al. [16] revived 
neural-network researches coinciding with introduction of new 
learning algorithms such as back propagation. Improvement of neural 
network is continued till now with proven capability of simulation of 
very complex phenomenon.

Figure 1 shows schematic of a bipolar neuron that contains a cell 
body, dendrites, and an axon. Dendrites are the input strand of the 
neuron. Information in form of signals come through dendrites and 
after performing some activities, response will be delivered to the next 
neuron by axons. Human brain contains 10 to 500 billion neurons [17] 
they are classified to different modulus with distinct responsibilities 
[18]. Figure 2 shows mechanism of a neuron and Figure 3 reveals 
connections between neurons in a network.

Procedure
The main purpose of this work is to find formation type and 

lithology of that formation exactly when a formation is being drilled 
with real-time drilling data and parameters. Some parameters such as 

Weight on Bit (WOB) pump pressure and formation type can change 
drilling rate [19]. We will use this idea for finding formation type and 
lithology. That is, we consider that a special formation causes a unique 
Rate of Penetration (ROP) when drilling parameters such as WOB 
are known. So we would introduce ROP and all parameters that affect 
ROP as input data and lithology (which in turn affects ROP) would be 
considered to be output.

Input parameters of neural network

47500 sets of data from 12 wells in South Pars gas field (in south of 
Iran, Figure 4) were selected. After quality control and data mining, we 
selected the following parameters as the most effective parameters for 
finding lithology: present driller depth, drilling rate, torque, weight on 
bit, Round Per Minute of bit (RPM), pump pressure, pump output, bit 
size, bit type (not a quantitative parameter, so we used four columns in 
that the first one represented PDC bits when it was 0 and cone bit if it 
was 1, with the remaining three columns showing IADC code for the 
used bit), length of drilled interval for the current bit, lifetime of the 
current bit (this parameter with conjunction of the previous parameter 
can better show dull bit grading), mud weight, and Total Flow Area of 
bit (TFA).

Output parameters of neural network

Output of the network is the formation type and lithology of the 
rock. First we assigned a code to all encountered formation while 
drilling South Pars gas field wells. Encountered formation in South 
Pars gas field and assigned codes to these formations could be seen in 
Table 1. 

In the next step 4 main lithologies were detected in the encountered 
formations; that is, limestone, dolomite, shale and anhydrite or clay. 
A column was allocated to each lithology. The first column represents 
limestone; the second one dolomite; the third one shale; and the last 
one clay or anhydrite. 0 in the first column shows that there is not 
limestone under the bit and 1 shows that rock under the bit consisted 
of limestone. 

So the output of the network would be a five digit code (Table 2) 
that first code shows the formation type and can be between 1 and 24 
and the other 4 digits represent lithology and can be 0 or 1. 

Transferring of data to the network

As shown in Figure 3, a BP network is made up of three layers: the 
input layer, the output layer, and the middle “hidden” layer [20,21]. 
In the conventional BP network, the numbers of input nodes and 
output nodes are determined by the numbers of the input and output 
parameters, respectively [22,22]. Generally, there can be any number of 
hidden layers. With a multi-hidden-layer network, a small number of 
weight adjustments are needed for the network to learn the knowledge 

 

Figure 1: Schematic of a bipolar neuron (Moazzeni et al., 2012).

 

Figure 2: Artificial neuron or a processing element (Moazzeni et al., 2012).

Figure 3: Three-layer neural network (Moazzeni et al., 2012).

 

Figure 4: South Pars Gas field, South of Iran.
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of the training samples and store them in the form of the weight 
distribution. However, theoretical studies indicate that if one single 
hidden layer has enough nodes, the identification precision needed 
can also be reached, so one-hidden-layer network is used for simplicity 
[24]. In the BP network, the commonly used activation function is the 
Sigmoid function and can be written as follows [25]:
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Also in some situations PURELIN and TANSIG activation functions 
might be used which they can be defined as follows, respectively:
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After gathering required data, data mining and quality control, all 
data were normalized for better consistency. On the other hand, target 
of the network was also normalized. 

For performing this research, after numerous trial and errors, a 
three layers feed forward back propagation network was utilized with 
TRAINLM training function and LEARNGDM adaptation learning 
function. Input layer consisted of 16 parameters and had dimension 
of 16 and dimension of output layer was 5 and the hidden layer had 30 
neurons. Transfer function in the layers 1 and 2 were TANSIG and for 
the last layer it was considered as PURELIN.

Normalization is usually used in the BP model because the input 
and output parameters may not fall in the range of zero and unity.

Results and Discussion
About 70% of input data were taken for network training, 15% 

for network testing and the rest for validation of the network. Figures 
5, 6 and 7 show network results for training, testing and 0.87 which 
demonstrates that network results will show good compatibility with 
real-time data from field. Figure 8 compares real formation versus 
predicted formation by the network. As seen in Figure 8, drilled 
formations were predicted by the network with great degree of 
accuracy. Results indicated that formation lithology can be predicted 
while drilling using available real-time drilling data, thus reducing 
some important drilling problems such as loss of circulation, stuck 
pipe and kick. This prediction capability can be used for compatibility 
between formation and bit and can improve bit selection program 
and drilling rate optimization. Also, accurately predicting of lithology 
would help geologist with cap rock prediction and would reduce the 
risk of drilling this layer.

Conclusions
1. Real-time lithology prediction could be very useful while 

drilling owing to the chance of controlling lots of drilling 
problems such as loss of circulation.

2. A methodology was proposed for prediction of formation type 
and lithology in any coordinates of field using operational data.

3. Proposed methodology is based on artificial neural networks 
whose ability to solve complicated problems is proven.

4. Before utilizing any neural network, data mining and quality 
control should be performed on available data.

5. Neural network helps to have accurate prediction of formation 
and lithology in South Pars gas field.

6. Utilizing artificial neural network is recommended while 

Formation Code Formation Code Formation Code Formation Code
GACHSARAN 1 MISHRIF 7 GADVAN 13 SURMEH 19

ASMARI 2 AHMADI 8 FAHLYAN 14 NEYRIZ 20
JAHROM 3 AHMADI 9 HITH 15 DASHTAK 21

SACHUN 4 MAUDDUD 10 ARAB 16 KANGAN 22
HALUL 5 KAZHDOMI 11 DARAN 17 DALAN 23

LAFAN 6 DARIAN 12 DYIAB 18 NAR 24

Table 1: Encountered formation in South Pars gas field and assigned codes to these formations.

Formation type
(1 to 24)

Limestone
(0 or 1)

Dolomite
(0 or 1)

Shale
(0 or 1)

Anhydrite or clay
(0 or 1)

Table 2: Generated output code for determining formation type and lithology.

 

Figure 5: Training results of the network.

 

Figure 6: Testing results of the network.
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dealing with different interrelated parameters (like lost 
circulation).

7. Prediction performance depends on sample data, when
prediction is made in other regions, the model should be
retrained.

8. Using ANN, drilled formations were predicted with great
degree of accuracy and network results showed good
compatibility with real-time data from field.
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