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Introduction
Soil erosion is defined as a displacement of solid particles originating 

from soil, rock, and other sediments. Soil is naturally removed by 
the effect of water, wind, ice, and/or by downward (or down-slope) 
movement caused by gravity [1]. Water caused erosion is particularly 
detrimental. This type of erosion involves three steps: detachment, 
transport, and deposition. Detachment involves dislodging of soil 
particles as raindrops impact on the ground surface; transport involves 
transporting these dislodged particles down the surface by gravity or 
in a water stream; and deposition happens when particles come to a 
stop. Based on geometry, erosion is classified as: sheet when a soil layer 
erodes uniformly; rill when soil movement forms small channels; gully 
when channels cut deep into the soil by running water; and streambank 
when scouring action of fast moving water removes sediment from 
sides and bottom of streams and rivers. All of these can be controlled 
with physical barriers (vegetation or rock) to dissipate some of the 
energy from raindrop impact and water flow.

Erosion is one of the most severe land degradation problems 
afflicting many parts of the world where topography of the land is 
relatively steep, such as levees. Evaluating the risk for erosion of most 
levees is exceedingly difficult because of their vast lengths (there are 
thousands of miles of levees in the USA); and thus, go unchecked. 
Levees are critical infrastructure systems intended to protect farmland, 
towns, and cities from flooding. Also, uncontrolled soil erosion usually 
causes severe damage to the surrounding environment, particularly 
degradation of water quality of creeks, rivers, and lakes. This happens 
as siltation (pollution of water by silt and clay soil particles), which 
is undesirable because of the high concentration of suspended 
sediments in waterways, and an increased accumulation of sediments 
at the bottom of reservoirs (both natural and manmade). Siltation also 
adversely affects aquatic life. To mitigate the effects of this pollution, 
advanced data processing techniques can be used to identify and 
predict high risk zones at specific sites; after which a proper erosion 
control program can be developed and deployed. From an economic 

standpoint, it is more cost-effective to deploy erosion control than to 
implement cleanup programs.

The research on automating erosion detection is new and not 
much work has been done in using content-based image processing 
in detecting erosion in levee sites. However, research has been done 
in using Landsat and aerial images to detect characteristics of land. In 
Dewan et al. [2] using Landsat data to quantify channel characteristics 
of the Ganges system. They were able to examine the changes before 
and after diversion. In Yao et al. [3] aerial photos were used to create 
topographic maps to study bank erosion and accretion in Mongolia 
reaches of China’s Yellow River. The images were compared from 
1958 to 2008 and it was concluded that erosion in this area was much 
greater than to those of similar size. Kummu et al. [4] studied the river 
changes to Mekong River from years 1961 to 1992. Recent work in this 
area include detecting changes to river beds using morphodynamic 
modeling [5], Landsat and stratigraphic records [6] and using Landsat 
images in a MCC approach to detect directional changes [6]. These 
works show that analyzing river changes and detecting bank erosion 
and accretion is very time consuming and there is need for a way to 
automate the process.

Content-based image retrieval (CBIR) uses the visual contents of 
an image such as color, shape, texture, and spatial layout to represent 
and index an image. In typical CBIR systems, multi-dimensional 
feature vectors are used to describe the visual contents of images in a 
database. The most widely used features for color are mean, median, 
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Abstract
Soil erosion is one of the most severe land degradation problems afflicting many parts of the world where 

topography of the land is relatively steep. Due to inaccessibility to steep terrain, such as slopes in levees and forested 
mountains, advanced data processing techniques can be used to identify and assess high risk erosion zones. Unlike 
existing methods that require human observations, which can be expensive and error-prone, the proposed approach 
uses a fully automated algorithm to indicate when an area is at risk of erosion; this is accomplished by processing 
Landsat and aerial images taken using drones. In this paper the image processing algorithm is presented, which can 
be used to identify the scene of an image by classifying it in one of six categories: levee, mountain, forest, degraded 
forest, cropland, grassland or orchard. This paper focuses on automatic scene detection using global features with 
local representations to show the gradient structure of an image. The output of this work counts as a contextual 
cueing and can be used in erosion assessment, which can be used to predict erosion risks in levees. We also 
discuss the environmental implications of deferred erosion control in levees.
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and standard deviation of red, green, and blue channels of color 
histograms; and for texture features are contrast, energy, correlation, 
and homogeneity. In this paper, a system is developed to combine global 
features with local representations to show the gradient structure of an 
image [7]. Scene detection is part of CBIR systems, and is an important 
section in semantic analyses of images. By specifying the scene, global 
information of an image is extracted that can help different processes 
in CBIR, video segmenting, indexing, and annotating.

This type of research typically has focused on one of the two areas: 
1) identifying the scene by taking into consideration the type of objects 
it contains, and 2) looking to identify important elements of an image 
and use these to detect and categorize the type of scene. For example, 
by detecting relatively smooth slopes in the aerial image shown in 
Figure 1 the scene can be classified as a levee. However, it is more useful 
to follow the second approach where the goal is to select global features 
to identify the scene; that is, viewing the entire image and using that 
information for the system to classify the scene of the image. In this 
paper the goal is to present a computer algorithm that combines the two 
approaches by generating local gradients and global color and texture 
features to identify the scene of an image. The algorithm presented in 
this paper can be used to process aerial images of levees that may be 
taken using aerial drones (Figure 1).

Literature Review
In the United States, the US Army Corps of Engineers (USACE) 

is responsible for providing agencies responsible for levee safety with 
guidelines to assess the safety of levees, which include over 2500 
nationwide [8]. The primary methods used for soil erosion detection 
rely on labor intensive, time consuming, and expensive approaches. 
Recently, researchers are starting to incorporate different data and 
image processing techniques to automate this process, but it can 
still require time-consuming human analysis after the preprocessing 

phase. Choung [9] used LiDAR data and multispectral orthoimages to 
identify the surfaces of various levee components schematically shown 
in Figure 1; particularly the slope, crown, and berm. This approach was 
also proposed as a procedure to identify eroded areas; however, it was 
only used to identify the levee components. 

Regardless of application, erosion quantification methods can be 
classified into three categories: point based, profile based, or volume 
related [10]. Point based measurements are mostly implemented by 
measuring the change in surface level via pegs that are inserted into 
the soil. Profile based methods are based on manual measurements via 
stakes that are lowered from an upper girder. Volumetric measurements 
are mainly based on integration of volume from profiles, or by standard 
leveling techniques.

Sanyal [5] presented an autonomous model to estimate the volume 
of raised beds to estimate erosion based on terrestrial photogrammetry. 
Their research is a combination of field related work along with a 
high level of automation, which leads to an effective solution for 
configurational analysis as a basis for estimating erosion. Iranmanesh 
et al. [11] presented a model to establish the most convenient method 
to study changes of the gully erosion process and features as well as 
their changes in length and area through time. They used image fusion, 
filter and principal component analysis (PCA) to compare the ground 
data with the image interpretation data to specify the morphometric 
characteristics of the selected gullies.

For scene recognition the current state-of-the-art approaches 
consist of studies that represent scenes with global features measuring 
color histogram parameters, orientations and scales of images, and 
considering general information about the images. By using the local 
low-level feature detectors across large regions of the visual field, global 
feature inputs are estimated, and the scene can be classified based 
on a feature vector. Mulhem et al. [12] presented a novel variation 

Figure 1: Aerial photograph depicting location of levee.
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of fuzzy conceptual graphs for use in scene classification. In the 
modeling presented by Oliva and Torralba [13], they only considered 
global features of receptive fields measuring orientations and spatial 
frequencies of image components that have a spatial resolution ranging 
from 1 to 8 cycles/image.

Lipston’s approach, which is called configural recognition, uses 
relative spatial and color relationships between pixels in low-resolution 
images to match the images with class models [14]. The Blobworld 
system [15] was developed primarily for content-based indexing and 
retrieval but is also used for scene classification.

Many researchers have suggested various approaches for detecting 
semantic objects, including sky, snow, rock, water, and forest for 
recognizing a scene [16]. In another work, researchers proposed a 
scene recognition model for indoor spaces. In their method, images 
that contain similar objects are classified in the same scene class [17].

Feature Vector
All scene classifying systems extract appropriate features and use a 

type of learning approach or pattern recognition engine to categorize 
an image. Our approach is to understand gist based methods on scene-
centered, rather than object-centered primitives. Global features are 
based on configurations of spatial scales and are estimated without 
invoking segmentation or grouping operations. By relying on low 
level feature detectors across large regions of the visual field, we can 
build a holistic and low dimensional representation of the structure 
of the scene. We use a framework of low-level features (multi-scale 
Gabor filters and color histogram), coupled with supervised learning to 
estimate the label for a scene. 

Texture features

Texture is a set of metrics for characterizing images along 
dimension of coarseness, contrast, directionality, likeliness, regularity, 
and roughness [18]. Texture gives us information about the spatial 
arrangement of intensities in an image. There are three approaches to 
calculate image texture features: structured, statistical approaches, and 
multichannel Gabor decomposition.

An important approach to extract texture features is using wavelet 
transforms, which refer to a process of decomposing a signal with 
a family of basis functions. Basically, Gabor filters are a group of 
wavelets, with each wavelet capturing energy at a specific frequency 
and a specific direction [19]. The Gabor features minimize the joined 
two-dimensional uncertainty in space and frequency. Gabor filters 
have been used in image applications such as texture classification, 
object recognition, segmentation, content-based image retrieval and 
motion tracking.

Four scales and six orientations are needed for Gabor-filter image 
processing. The mean and the standard deviation of the filtered 
images are used as features. A case study by Li et al. [20] evaluated the 
performance of texture descriptors using sample images of rocks. In 
their study, the authors found that Gabor filters outperformed other 
texture descriptors. By applying the Gabor filters to a given image, a set 
of filtered images are produced. Each of the filters estimates the energy 
along a specific frequency and orientation of the input signal. The mean 
and the standard deviation of the filtered images are used as features 
[21].

The discrete Gabor wavelet transform for a given image, I(x, y) is 
obtained by convolution using the following relationship [22]:

( , ) ( , ) ( , )mn mn
s t

G x y I x s y t s t∗= − − Ψ∑∑                 (1)

where, 

s and t are filter mask size variables, 

mn
∗Ψ  is the complex conjugate of mnΨ , which is a class of self-

similar functions generated from dilation and rotation of the following 
mother wavelet:

2 2
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where, 

W is a modulation frequency. 

The self-similar Gabor wavelets are obtained using the following 
relationship:

( , ) ( , )m
mn x y a x y−Ψ = Ψ  

                    (3)

where,

)sincos(~ θθ yxax m += −                  (4)

)sinsin(~ θθ yxay m +−= −                  (5)

and,

m=0, 1,…, M–1 specifies the scale

n=0, 1,…, N–1 specifies the orientation of the wavelet 

M is the number of scales 

N is the number of orientations

a is greater than 1, and represents a scale factor and is dependent 
on the higher center frequency and lower center frequency of interest 

Nn /πθ = .

After applying the Gabor filters on an image, an array of magnitudes 
is obtained. This contains the means and standard deviations that 
represent the texture feature components. Texture features are 
extracted using the Gabor filters. These filters use scales and orientations 
to provide additional views of a specific image. The total number of 
filters used on the image is equal the product of S and K (S*K); where, 
S represents the total number of scales and K represents the number 
of orientations. The texture feature vector for the image is constructed 
from the means and standard deviations obtained from each of the S*K 
views produced by the Gabor filters [19]. Figure 2 shows the optimal 
Gabor filters using Fisher’s linear discriminant (FLD) measure.

For this case, four scales and six orientations can be used. Different 
combinations have been tested and the parameters with the optimal 
results were chosen. A total of 24 views are used, which result in 24 
means and 24 standard deviations for each sub-image. In the feature 
vector, the first 48 components are the texture features. 

Color features

Color is an important dimension of human visual perception as it 
helps to recognize and discriminate visual content. Color features have 
been found to be effective for indexing and searching for color images, 
and these features can be extracted and matched easily [23]. The most 
common color metric used in the literature is the color histogram.

Each histogram bin is represented by a range of colors and the 
color histogram represents the coarse distribution of the colors in the 
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image [24]. So, if two colors are in the same bin they are treated as 
similar colors. On the other hand, if two colors are in different bins 
they are considered different, even if they might be very similar to each 
other. By mapping the image to an appropriate color space, quantizing 
the mapped image and then counting the occurrence of each color, the 
color histogram for the image can be obtained.

By using the color histogram, similarity of color features can 
be specified by counting the color intensities. Any color could be 
reproduced by combining the three primary colors: red (R), green (G), 
and blue (B). Therefore, these three colors represent colors as vectors in 
3D RGB color space. A color descriptor metric, such as the histogram, 
provides a way to quantify the similarity of color features in images by 
counting the color intensities. In general, a color image has three layers 
(R, G, and B); therefore, three color histograms with twelve bins being 
calculated for each sub-image. Thus, the next 36 features in the feature 
vector are related to color features.

Histogram of gradient (HOG)

Histogram of gradient representation (HOG) is used for capturing 
gradient structure. HOG computes gradients in regions and puts 
them in bins according to orientation [25]. HOG also computes the 
discretized gradients using 1-D centered point discrete derivative mask 
in both the horizontal and vertical directions. The vectors are given as,

[ ]101−=xA  and [ ]Τ−= 101yA                  (6)

The region is then segmented into eight by eight cells. For each cell, 
a histogram of gradients is computed. For each pixel, a vote is cast that 
is weighted by the gradient magnitude and orientation. Each vote is 
cast toward a certain gradient orientation range corresponding to a bin 
in the histogram. The number of bins is 36 for each cell. Finally, each 
histogram is contrast normalized over spatial neighbors.

For each image after normalizing color, the indirect gradient is 
extracted for each cell. Each pixel within the cell votes for an oriented 
based histogram bin based on the values found in the gradient 
computation. For each cell, 36 bins are specified. In this case, after 
decomposing an image into 24 × 24 pixels cell, HOG dimension is 

3500. Figure 3 shows the HOG representation of images from levee, 
grassland and mountain.

Methods
A set of features consisting of local gradients and global color and 

texture features are extracted, which are used for scene recognition. 
Figure 4 shows the overview of this fully automated framework for 
identifying the scene of the image. For those images that were classified 
as levee the second phase is used to detect soil erosion.

Analysis methodology

The objective of this work is to be able to classify the scene of an 
image using a set of training data. The image dataset, which is being 
used in this study, consists of images related to scenes where erosion 
can happen, such as along a levee. For this paper, a case study area 
was selected in the California central valley. 120 images were captured 
using drone aerial photography from scales that range from 2-5 meters 
from the ground. The images can be classified in six different scenes: 
levees, mountains, forest, degraded forest, grassland, or orchard. For 
evaluation purposes, the dataset is divided into training and testing; and 
different classification methods such as SVM, Naïve Bayes, Decision 
Trees, and Bootstrap Aggregation are used to perform the analysis.

A feature vector is extracted for each image. This feature vector 
is a combination of texture, color, and HOG features. Waikato 
Environment for Knowledge Analysis (WEKA) [26] will be used to 
apply classification methods, such as Naïve Bayes, Support Vector 

Figure 2: Optimal Gabor filters using FLD measure.

Figure 3: HOG representation for levee, grassland, and mountain.
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Machines, and Decision Trees. WEKA is a machine learning software 
with a collection of machine learning algorithms for data mining tasks. 
After the features have been extracted, a model is trained to detect the 
scene of each image. In the classification process, LibSVM, Decision 
Tree, Naïve Bayes, and Bootstrap Aggregation classifiers are used.

As discussed before, there are six scene classes: levee slope, 
mountains, forest, degraded forest, grassland, or orchard. For 
evaluation, the corpus will be divided into two sections: one section 
for training purposes and the other section for testing purposes. The 
training set consists of 80% of the corpus and testing consists of the 
remaining 20%. 10-Fold cross validation will be performed to increase 
the accuracy of the result. 

In the second phase of this ongoing study after the scene of 
the image has been detected, the image is fed into a second image 
processing algorithm to detect erosion. The process entails using levee 
site photographs from before and after a rain event, or from a regular 
scheduled survey. The photographs can then be processed to determine 
the extent of change in surface texture. When certain benchmarks have 
been exceeded, mitigation work can be ordered to avoid catastrophic 
erosion, or excessive siltation that can lead to costly cleanups of the 
waterway; or in some cases, rain water might have to be discharged 
to nearby waterways resulting in costly flooding and environmental 
cleanups. The main goal of the work presented in this paper is to 
provide an overview of an algorithm that can be used to identify 
erosion problems along levees before they have adverse impacts on the 
environment; thus, avoiding costly flooding and cleanups that result 
from delayed erosion control.

Results
In the first phase of this study the image is classified into the 

following six scene classes: levee slope, mountains, forest, degraded 
forest, cropland, grassland or orchard. For each image a set of features 

consisting local gradients and global color and texture features are 
extracted and used to detect the scene. Table 1 shows the classification 
results (Tables 1 and 2).

By looking at the result and the confusion matrix, it can be seen 
that forest and degraded forest tend to get misclassified. Since we are 
using global images for each scene and the features consist of color 
and texture features, images with the same correlation, contrast, 
homogeneity, and same range of colors tend to be classified in the same 
category.

In the next phase, the images that were classified as levee site will 
be fed into another image processing algorithm to detect erosion. The 
algorithm is used to detect any major changes in surface texture by 
calculating the erosion surface area. Figure 5 shows the feature output 
of our erosion detection algorithm. In cases where before and after 
photos were available the algorithm generates all the erosion lines and 
compares the difference between width, height and number of lines. 
Any major changes are labeled as erosion. 

Conclusions and Future Work
In this paper, we presented a two phase image processing algorithm 

that first detects the scene of the image and classifies it into 6 predefined 
classes. In the second phase of the algorithm, soil erosion is detected 
along a levee by generating global features along with local gradients 
and using supervised classification methods. Most erosion detection 
algorithms available require human observations and manual 
work, which is time consuming and error-prone. Other algorithms 
consist of a combination of field related work along with a high level 
of automation. What distinguishes the approach outlined in this 
paper with the state-of-the-art methods is the fact that the proposed 
methodology is fully automated and can detect areas highly prone to 
soil erosion from Landsat and aerial images taken using areal drones.

Figure 4: Framework.

Scene Class Precision Recall F-measure
Levee slope 0.894737 0.85 0.871795

Mountain 0.823529 0.7 0.756757
Forest 0.625 0.75 0.681818

Degraded forest 0.666667 0.7 0.682927
Grassland 0.736842 0.7 0.717949
Orchard 0.85 0.85 0.85

Table 1: Classification results.

                            Classified as

Actual class

Levee slope Mountain Forest Degraded forest Grassland Orchard

Levee slope 17 2 0 1 0 0
Mountain 1 14 1 1 1 2
Forest 0 0 15 3 2 0
Degraded forest 0 0 6 14 0 0
Grassland 1 1 2 1 14 1
Orchard 0 0 0 1 2 17

Table 2: Confusion matrix.
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In this method the scene of the image is detected, which will help 
narrow the search space. The image processing model proposed can 
be used at a preprocessing stage to detect soil erosion along levees and 
avoid costly flooding and cleanups from delayed erosion control.

Quantifying erosion can be done using Terrestrial Laser Scanning 
(TSL). This method is widely used in geosciences but has some 
limitations in erosion detection. These limitations include accuracy 
of measurements and instability of the references used on steep 
slopes with near vertical viewing direction, on very small plots, or at 
locations where erosion magnitudes are very large. For the next phase 
of our study we are planning to use an emerging new equipment, Light 
Detection and Ranging (LIDAR). The scanner integrates a GPS receiver 
able to correlate individual scans and snitch them with accuracy up to ± 
1 mm, with a 350-meter range.  
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