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Abstract
Since the U.S. Centers for Disease Control and Prevention began tracking the prevalence of autism spectrum 

disorder (ASD) over twenty years ago, rates have tripled, with an estimated one in 44 children now receiving a 
diagnosis [1]. Early ASD diagnosis and intervention during the critical neurodevelopmental window is recommended 
to enhance long-term outcomes [2-4]; yet many families experience diagnostic delays and challenges accessing 
services. Diagnostic barriers include long waits for specialist assessment, lengthy and fragmented evaluation 
processes, and limited primary care diagnostic capacity. Race, ethnicity, gender, geography, and socioeconomic 
status contribute to further delays for some populations [5-8]. Even after an ASD diagnosis is received, health 
services may struggle to fund and deliver targeted and timely interventions to the rapidly growing number of 
children requiring treatment. Data driven approaches to scale, streamline and enhance the quality of diagnostic 
and therapeutic ASD care available to families are urgently required. This narrative literature review considers the 
practice change potential of one such approach: Artificial Intelligence (AI) applied to the field of ASD. After providing 
a brief overview of AI in healthcare, we review a number of ASD specific AI-based approaches and consider their 
potential to augment current ASD diagnostic or treatment pathways. Key challenges associated with integrating AI-
based technologies into clinical practice are also considered.
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An overview of AI in healthcare
Availability of massive and expanding quantities of digitized 

healthcare data, together with advances in computational and storage 
technologies and machine learning approaches, have opened up new 
possibilities for AI in healthcare [9]. A multidisciplinary branch of 
computer science, AI leverages computers to develop systems or 
algorithms capable of undertaking or partaking in tasks that would 
otherwise rely completely on human intelligence [10]. Within 
the healthcare sector strong economic investment in AI-powered 
technologies [11] has contributed to an exponential growth in topical 
research [12]. This focus has begun to filter into clinical practice with 
over 160 AI-powered devices having already been granted regulatory 
clearance, approval or marketing authorization by the Food and Drug 
Administration (FDA) [13].

With capabilities to extract clinically meaningful insights from 
rapidly increasing volumes of healthcare data that have exceeded 
human analytic capacity [14], AI offers multiple opportunities to 
augment healthcare practice. Machine learning, a subtype of AI where 
algorithms are applied to large datasets to look for patterns, can be 
used to create models that encapsulate those patterns to help predict 
outcomes [15,16]. Recent reviews have highlighted the promise of 
machine learning to enhance risk prediction, streamline some diagnostic 
practices, and support a more data-driven approach to clinical decision-
making [17,18]. AI-enabled tools may improve accuracy and efficiency 
of diagnosis, leading to treatment or intervention, and scalability by 
quickly managing repetitive processes, storing and handling large 
amounts of data, and providing support for diagnostic or treatment 
decisions that may reduce the probability for mistakes [19,20]. Use 
of deep neural networks to augment interpretation of medical scans 
and other image based data, is one AI application that has received 
considerable attention [14,21]. A number of recent studies have also 
explored the therapeutic potential of AI-powered technologies, as well 
as its capacity to streamline administrative tasks [22]. For example, 
natural language processing based AI solutions are being leveraged 

to automate clinical documentation [23,24]. Such approaches show 
potential to improve workplace efficiency and increase the time 
clinicians can dedicate to patient care.

A number of promising ASD specific AI-based approaches 
have been described in the recent literature. The following section 
of this review highlights key challenges within the ASD diagnostic 
and therapeutic space and considers the potential of some of these 
technologies to augment care pathways.

AI in the ASD diagnostic landscape
Current diagnostic challenges

While ASD can reliably be diagnosed as young as 18 months of 
age, diagnostic challenges and workforce capacity issues in the U.S. are 
leading to prolonged wait times and delayed initiation of ASD specific 
treatments. The current average age of ASD diagnosis remains high at 
over four years [1,25], with roughly 27% of children still undiagnosed at 
age 8 [8]. While equity of access to diagnostic assessments is improving 
[1], certain groups such as girls, children who are non-white, of lower 
socio-economic status, or rural residing, have been noted in the 
literature to be more often un-diagnosed, mis-diagnosed, or receive 
a delayed diagnosis [7,26]. ASD evaluation is based on behavioral 
observations, highlighting the need for more objective methods for 
ASD assessment with the potential to better understand heterogeneity 
and identify potential phenotypes that could guide treatment. In 
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response, calls have been made to develop a more data-driven and 
equitable approach to ASD diagnosis.

ASD has traditionally been diagnosed in specialist settings in 
the U.S. The dramatic rise in the number of children requiring ASD 
evaluations has exceeded specialist capacity, however, and resulted 
in prolonged waits for specialist evaluations. To help facilitate access 
to early intervention services, the recently updated 2020 American 
Academy of Pediatrics (AAP) clinical report encourages general 
pediatricians to make an initial diagnosis of ASD within the medical 
home for those not requiring specialist referrals [27]. Increasing 
primary care diagnostic capacity could reduce some of the pressure 
placed on specialist services and potentially streamline diagnosis and 
treatment initiation. Unfortunately, current ASD diagnostic tools can 
be difficult to use in primary care settings as they are time intensive and 
often require specialist training to administer [28]. They have also only 
been clinically validated for in-person use, presenting an additional 
challenge in the context of the ongoing COVID-19 pandemic [29]. 
Novel approaches that could be administered remotely or within 
the primary care setting, could potentially decrease some of these 
diagnostic challenges and workforce capacity issues.

Emerging AI-based innovations

There are a growing number of studies exploring the potential 
utility of AI in ASD screening and diagnosis. Within the brain 
magnetic resonance imaging study space, a recent systematic review 
and meta-analysis identified 43 studies investigating machine learning 
for ASD diagnosis [30]. Diagnostic accuracy appeared highest for the 
structural magnetic resonance imaging sub-group of studies, however, 
multiple methodological limitations were noted across studies. Further 
robustly designed follow-up trials are needed to clarify the utility of 
these approaches. 

AI is also being used to mine electronic medical records and 
uncover ASD comorbidity patterns which could enhance screening 
practices. One novel ASD prediction approach [31] developed digital 
bio-markers based on the medical histories of patients aged 6 years 
and under. Data from a commercial claims and encounters database 
along with data from de-identified diagnostic records from a separate 
large medical center database was used to train and validate the model. 
For children over two years of age, the study investigators were able 
to leverage this model to identify ASD high risk with an area under 
the receiver operating characteristic above 80%. The study authors 
note that the autism comorbid risk score (ACoR) they were able to 
estimate from this work, displays a superior predictive performance 
to commonly used questionnaire-based screeners and is potentially 
less biased across demographic groups. An ACoR is an estimate of the 
likelihood of later ASD diagnosis based on the comorbidity history. An 
earlier topical study [32] similarly drew on electronic medical records 
(20K+ patients) and listed medical comorbidities to develop algorithms 
to detect clinically unique ASD subgroups. 

Computer vision AI technology is also being applied in the 
ASD screening space. Recently, researchers have used deep learning 
facial image analysis to propose a more objective ASD screening 
solution [33]. This work draws on noted phenotypic facial differences 
between typically developing children and children with ASD [34]. 
The resulting model had 95% classification accuracy. The authors 
highlight the potential of such an approach to address the subjectivity 
of current screening practices. Further model training on race-specific 
datasets could potentially also address some of the racial biases [26] 
apparent in current practice. A mobile device app designed to capture 

and distinguish between the eye-gaze patterns of typically developing 
toddlers and toddlers with ASD has also recently been developed 
[35]. Designed for use in pediatric primary care settings, the app uses 
differences detected in the gaze patterns of children with ASD, including 
poorer coordination of gaze with speech, and reduced gaze response to 
social stimulus. Application of AI to kinematic features has also shown 
some potential within the screening and diagnosis space (for a review 
see [36]). One topical study [37] used a supervised machine learning 
approach to differentiate between typically developing children and 
children with severe levels of functional impairment related to ASD 
based on seven upper limb movement features. Analysis of speech 
prosody with machine learning techniques has also been explored with 
some success in ASD screening research [38].

A prescription AI-based Software as a Medical Device [39], 
prospectively validated, has been developed to aid in the diagnosis of 
ASD in primary care settings. Following strong clinical trial results, 
the Device was granted FDA marketing authorization in 2021 [40]. 
The Device is a diagnosis aid, rather than a standalone diagnostic tool. 
It leverages a machine learning algorithm developed using patient 
record data from thousands of children with diverse conditions, 
presentations, and comorbidities who were either diagnosed with ASD 
or confirmed not to have ASD based on standardized diagnostic tools 
and representing both genders across the supported age range [41-45]. 
Questionnaires combining data and clinical experience were developed 
to identify the maximally predictive behavioral features of ASD based 
on the categories of social communication, verbal communication, 
facial expression, and repetitive behaviors as outlined by DSM-5 
criteria. The Device combines 3 independent inputs, all of which can be 
completed remotely (see figure 1). Uploaded information is evaluated 
based on predictive features that are most indicative of ASD and one 
of 3 outputs are provided for the primary care provider to use in 
conjunction with their clinical judgment: ASD positive, ASD negative, 
or indeterminate/no result. The latter output acts as a risk control 
measure [46,47] when information is insufficiently granular to make a 
diagnostic recommendation with confidence (Figure 1).

Approaches such as those highlighted above illustrate the breadth 
of novel AI-based work being undertaken in the ASD screening 
and diagnostic space. Next, we briefly review key challenges and 
some potential AI-based solutions within the ASD intervention and 
therapeutics space.

AI in the ASD treatment landscape
Current treatment challenges

Tailored interventions during the critical neurodevelopmental 
window can enhance long term outcomes, including gains in cognitive 
[48,49] and adaptive functioning [4,50], receptive and expressive 
language use [51], and social skills [3,52]. Despite recognition of the 
value of early intervention, only one in three children with ASD in the 
U.S. is thought to be receiving standard of care treatment [53]. Reasons 
for these gaps include inconsistent access to care providers, especially 
across regional and remote areas [54], an insufficient number of 
trained care providers to meet the growing need for ASD intervention, 
and high out-of-pocket treatment costs, in some cases up to $80,000 
per year [55]. Difficulties accessing in-person care providers due to the 
ongoing Covid-19 pandemic has further curtailed treatment access for 
some families.

Emerging AI-based innovations

A number of promising AI-based ASD treatment innovations 
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are explored in the literature, including the use of robot assisted 
therapy [56]. Studies have variously utilized autonomous, partially 
autonomous, and non-autonomous robot models [57]. Social robot-
therapy studies have reported improvements in eye contact, emotional 
recognition and expression, imitation, shared attention to a common 
object, turn-taking, motor skills and learning behaviors [57-60]. 
Much of this research is still experimental, however, and large clinical 
validation studies are needed to quantify the real world potential of 
such technologies in ASD treatment [61].

Preventing meltdowns using AI technology is another interesting 
area of ASD intervention research. Behavioral precedents to challenging 
behavior in children with ASD were identified in one study using deep 
learning techniques [62]. Researchers then developed a caregiver alert 
mechanism. This mechanism was designed to provide caregivers with 
timely warnings so they could potentially intervene prior to behavior 
escalation. A more recent study [63] similarly sought to develop 
meltdown prevention signals via AI computer-vision techniques which 
facilitated real-time facial expression monitoring in children with ASD. 

In other research, neural networks have been leveraged to 
predict how children with ASD will respond to behavioral therapy 
[64]. This approach was used to explore the relationship between 
therapy, supervision intensity, age, and gender, on mastery of 
learning outcomes. Machine learning models have also been built 
to provide predictive recommendations for the most suitable types 
of technological treatment interventions for children with ASD 
[65]. Treatment recommendations were made based on singular or 
combination symptom patterns. Recent research [66] has also explored 
the use of an AI-augmented learning and applied behavior analytics 
platform to personalize ASD intervention. Study authors highlight the 
potential of such approaches to enhance data-driven clinical decision-
making, improve intervention efficacy and streamline care delivery.

Clinical adoption challenges

Despite advances in utilizing AI in healthcare, widespread clinical 

adoption has been limited. Barriers to broader adoption include 
difficulties integrating such technologies with existing electronic 
medical record systems, and ethical and legal concerns [67-69]. 
Regulatory frameworks that account for the differences between AI-
based devices and other types of medical devices [70] also require 
further development. In addition, many AI models require large 
datasets to train on. However, combining multiple datasets presents 
technical challenges, and concerns over data privacy and ownership 
have been raised [71]. The quality of data supplied to a machine 
learning algorithm is also of critical importance; data bias or imbalance 
can limit model generalizability and perpetuate pre-existing inequities 
if not accounted for [22,72]. Questions about a lack of transparency in 
certain types of AI algorithms and the implications of this within the 
context of clinical decision-making, have also been raised [14]. Several 
different approaches to algorithmic explainability and trustworthiness 
have been proposed in response to this concern [14,73]. Clinician and 
patient focused AI education is also required prior to broad deployment 
of these technologies within care pathways. Currently, however, AI 
education in medical training is patchwork and insufficient [74-77]. 
Some patients have also expressed concern over data-security and 
safety standards for AI-based health technologies [78].

Conclusion
Rapidly rising demand for ASD evaluations and treatment [1] 

has strained workforce capacity and led to suboptimal care for some 
children. Understaffing, long specialist wait lists, lengthy and complex 
assessment processes, demographic biases, and limited primary care 
evaluation capacity have all contributed to delays in diagnosis and 
treatment initiation [79]. Reduced in-person care options during the 
ongoing Covid-19 pandemic has further exacerbated access challenges. 
AI-based innovation in the ASD treatment and diagnostic space shows 
potential to help address some of these practice challenges. However, 
additional research is needed to comprehensively clarify the utility 
and efficacy of many of these approaches. Challenges relating to 
regulation, data selection and integration, algorithmic transparency 

Figure 1: Graphical representation of the Device and its major components.
Figure legend: A. Caregiver uses smartphone to answer a brief questionnaire, B. Caregiver uploads two short (1 minute, 30 seconds up to 5 minutes) home videos of their 
child to be scored by trained video analysts, and C. their primary care physician (or other qualified health care provider) independently answers a short clinical question set 
in approximately 10 minutes. These inputs are securely transmitted to the D. trained analysts where video features are extracted. E. The caregiver, primary care physician, 
and video analyst inputs are combined into a mathematical vector for machine learning analysis and classification. F. The Device provides a result of ‘ASD positive’ or ‘ASD 
negative’ or an indeterminate output (no result).
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and patient and clinician preparedness will all need to be addressed 
prior to widespread clinical adoption. While much of this research is 
still in its infancy, the promise of AI in the field of ASD has become 
clear. As sophistication of machine learning approaches increase, and 
the volume of digitized medical information and computational power 
and storage capabilities continue to expand, the impact of intelligent 
technology on the healthcare landscape will likely accelerate at a rapid 
pace [10,80].
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