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Editorial
Finding factors that control complement (C) components

deposition on bacterial cells is the way to explain the sophisticated
mechanism of bacteraemia. Lipopolysaccharide (LPS, endotoxin) is a
surface antigen found in the cell walls of Gram-negative bacteria, such
as Salmonella [1]. LPS action on the human body is often considered
in the context of sepsis, which is characterized by an excessive
inflammatory response in the presence of endotoxin. At low
concentrations, LPS stimulates innate immune system, which helps the
host to eliminate the invader, but at high levels, it causes shock and
even death [2]. Moreover, recent LPS characterization supports the
development of a new vaccine against non-typhoidal Salmonellae for
Africa [3]. From the point of view of pathogens, LPS-dependent
resistance to C-mediated killing is an essential virulence property. In
this paper, I want to highlight the main findings on the role of LPS in
bacterial C-dependent serum susceptibility. To introduce, it is worth to
bringing forward a general structure of endotoxin. LPS of smooth
strains (S) consists of three structural domains: lipid A, which anchors
the whole molecule in the bacterial cell wall, core oligosaccharide, and
O-specific polysaccharide chains (O antigen, O-Ag).
Lipooligosaccharide (LOS) is analogous to the LPS, but it lacks O-Ag.
When the LPS is connected to the bacterium, the outermost fragment -
O antigen determines the response of the inflammatory system. In case
of killing or disruption of bacterial cells with drugs (i.e. antibiotics)
results in a lipid A release, the most toxic domain of endotoxin [1]. The
role of LPS and its chemotypes in the resistance of bacteria to C has
not been investigated thoroughly. Since the 80's, it has been known
that long-chain LPS with complete O-specific chains confers bacterial
resistance to serum by promoting the deposition of C components at a
distance from the cell wall, thus preventing its disruption with the
C5b-9 complexes. It was demonstrated that the amount of LPS O-Ag
and its chain length distribution are important factors that protect for
example Salmonella strains from C-mediated lysis [4,5]. The protective
role of LPS and O antigen in serum resistance was also highlighted by
an interesting study investigating the serum resistome of Escherichia
coli ST131 [6]. Partial or total loss from the LPS of the sugars
responsible for O-antigenicity (rough strains, R) often results as
increased sensitivity to the bactericidal effect of serum, however, such
loss is not necessary for serum sensitivity [7]. For instance, smooth
Proteus mirabilis strains were sensitive to C-mediated killing, despite C
binding by their LPS [8]. Gram-negative bacteria lacking the
polysaccharide side chains within O-Ag activate C via the classical
pathway (CP) [9]. In turn, smooth strains with complete LPS activate
C via the alternative pathway (AP) [10], but the binding of MBL to the
complex carbohydrate structures of microorganisms is poorly
understood. Some results support the hypothesis that LPS structure is
a major determinant of MBL binding [11]. O-Ag plays a significant
role in blocking the early deposition of C3 on bacterial surfaces.
However, no direct correlation between the C3 deposition pattern and

bacterial resistance was observed [12]. It was also shown that C3
activation by LPS via the AP was sensitive to slight variations in the
chemical structure, but not to large changes in the length of the O-Ag
polysaccharide side chain of LPS [13]. Endotoxin isolated from a
serum-sensitive Shigella flexneri strain deposited more C3 fragments
than LPS from serum-resistant strains [14]. O-antigen chemical
variation helps the invaders to evade host's immune response until
specific antibodies appear. Of particular interest is the presence of
sialic acid (Sia) moieties in LPS or LOS, molecules typical for mammal
tissues. Pathogenic bacteria, especially those living in association with
higher organisms may incorporate Sia into their surface structures.
Sialylation of eukaryotic membrane surfaces enhances the interaction
between C3b and factor H, resulting in cleavage of C3b to iC3b by
factor I. Possessing of Sia by bacteria results in increased conversion of
bound C3b to iC3b on the organism, which may be a mechanism for
their serum resistance in vivo. Sialylation of Neisseria gonorrhoeae
LOS converts serum-sensitive strains to serum resistant [15]. This
corresponds to the observation that sialylation of gonococcal LOS is
essential in the modulating of C action through inhibition of the AP
[16]. In contrast, the presence of Sia in the structure of Salmonella O48
LPS was not sufficient to block the AP activation [17] and serum-
sensitive Salmonella O48 with sialylated LPS poorly converted C3 to
C3c [18]. In other study on Campylobacter jejuni blood isolates,
susceptibility to human serum was not attributable to the ability to
sialylate LOS [19]. Although microorganisms are well characterized
with their virulence factors, they are still able to evade host defense
mechanisms. Gram-negative bacteria with their potential to change the
chemical structure of LPS may become distinct strains containing the
unique surface antigens pattern. It may generate serious clinical
problems of global interest to eliminate bacteria occurring systemic
infections with current available drugs.
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