

Open Access

Brief Determination of Standard Formal Potentials for the Transfers of Several Pairing Anions across the Nitrobenzene/Water Interface by Na(I) Extraction with 18-Crown-6 Ether

Kudo Y^{1*}, Kaminagayoshi A², Ikeda S¹, Yamada H¹ and Katsuta S¹

¹Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
²Department of Chemistry, Faculty of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

Abstract

Extraction constants (K_{ext}) for the extraction of sodium salts (NaA) with 18-crown-6 ether (18C6) from water (w) into nitrobenzene (NB) were determined at 298 K, together with the determination of individual distribution constants ($K_{D,A}$) of several pairing anions A⁻. The symbols K_{ext} and $K_{D,A}$ were defined as [NaL⁺]_{NB}[A⁻]_{NB}([Na⁺][L]_{NB}[A⁻]) at L = 18C6 and [A⁻]_{NB}/[A⁻], respectively; the subscript "NB" shows the NB phase. Also, ion-pair formation constants for sodium 2,4-dinitrophenolate (NaDnp) and its ion pair complex with 18C6 in water were determined by potentiometry with a Na⁺-selective electrode. Standardized (S) $K_{D,A}$ values were briefly calculated from the following thermodynamic cycle: $K_{D,A}^{S} = K_{ext}/K_{D,Na}^{S} K_{NaL,NB}$. Here, $K_{D,Na}^{S}$ and $K_{NaL,NB}$ denote the standardized individual distribution-constant of Na⁺ into and a complex formation constant for NaL⁺ in the NB phase, respectively. Moreover, equilibrium potential differences ($\Delta \varphi_{eq}$) at the NB/w interface were estimated from the relation $\Delta \varphi_{eq} = 0.05916\log (K_{D,A}^{S}/K_{D,A})$ at 298 K. The $\Delta \varphi_{eq}$ values of A⁻ = F_3CCO_2^{-}, MnO₄⁻, ReO₄⁻ and Dnp⁻ were determined for comparison with the value of picrate ion. The plot of log K_{ext} *versus* $\Delta \varphi_{eq}$ gave a positive correlation at (correlation coefficient)² = 0.748.

Keywords: Standard formal potentials; Individual distribution constants; Extraction into nitrobenzene; Ion-pair formation constants; Potentiometry; 18-Crown-6 ether

Introduction

Individual distribution constants ($K_{D,M}$ and $K_{D,A}$) of cations {M^{z+} with the formal charge of z (= 1, 2) and monovalent anions (A⁻) are generally important for the determination of equilibrium constants, such as complex formation (or stability) constants ($K_{\rm ML,org}$) for ML^{z+} and acid dissociation ones of HA in organic (o or org) phases, in electrochemistry at water/o solution interfaces [1-5]. With respect to these distribution constants, the authors have proposed the presence of interfacial equilibrium potentials $(\Delta \phi_{\rm eq})$ in solvent extraction processes with such interfaces and determined so far many $\Delta \varphi_{ea}$ values by applying this idea to the monovalent or divalent metal extraction with crown compounds (L) [6-10]. Here, the $\Delta \varphi_{eq}$ values have been obtained from the relation [2,8], $\Delta \varphi_{eq} = \Delta \varphi_{pic}^{0'} - 0.05916\log K_{D,Pic}$ at 298 K, based on the standardized formal potentials ($\Delta \varphi_{\rm Pic}^{0'}$) for the transfer of picrate ion (Pic^-) across the nitrobenzene/water (NB/w) [7-9,11], benzene (Bz)/w [10], dichloromethane (DCM)/w [6,11] or 1,2-dichloroethane (DCE)/w interface [6,8]. On the other hand, there are systematic studies for many A- distribution from water into DCE or NB in the $K_{\rm D,A}$ determination, using the CsA extraction with 24-crown-8 ether derivative [12] or the extraction of single salts [1,13], MA or MA₂. However, the no relation between $K_{\rm D,A}$ and $\Delta \varphi_{\rm eq}$ had been reported in these extraction studies [1,12,13]. Therefore, it is difficult to check whether the $K_{D,A}$ values experimentally-obtained are equivalent to those standardized at $\Delta \varphi_{eq} = 0$ V (namely the $K_{D,A}^{S}$ {= exp($\Delta \varphi_{A}^{0'}$ /0.02569) at 298 K [2,8]} values) or not. According to our previous paper [14], $K_{\rm D,A}^{\rm S}$ has been electrochemically derived at $\Delta \varphi_{\rm eq}$ = 0 V from the equation

$$\ln K_{\rm D,A} = -F(\Delta \varphi_{\rm eq} - \Delta \varphi_{\rm A}^{0'})/RT \tag{1}$$

being the same as that [2] described above. Here, the minus sign of the right hand side (rhs) of this equation comes from the formal charge of A^- [11,14].

In order to clarify the presence of $\Delta \varphi_{\rm eq}$ for the transfers of other A⁻ at the NB/w interface, as well as its presence for that of Pic⁻, we performed here extraction experiments of sodium salts, NaA, by 18-crown-6 ether (18C6) into NB at $A^- = MnO_4^-$, ReO_4^- , $F_3CCO_2^-$ and 2,4-dinitrophenolate ion (Dnp⁻). For increasing the actual distribution efficiency of A(-I) and Na(I) as much as possible, 18C6 was used in the above extraction systems as the more effective L, compared with benzo-18C6 and dibenzo-18C6 [15]. This idea had been actually employed by Levitskaia et al. [12]. Also, NB was used as a diluent for facilitating the dissociation of the ion-pair complex Na(18C6)+A- extracted in the o phase and then this caused totally an increase in extraction-ability of Na(I). Moreover, the ion-pair formation constants, K_{MA}^{0} and K_{MLA}^{0} , for NaDnp and Na(18C6)⁺Dnp⁻ in water at $I \rightarrow 0$ mol dm⁻³ were determined at 298 K by potentiometry [16] with a commercial Na⁺⁻ selective electrode (Na⁺-SE). Here, the symbol I refers to ionic strength of the aqueous solution with Na⁺Dnp⁻ or Na(18C6)⁺Dnp⁻.

Experimental

Materials and reagents

Purities of Na(I) in commercial F_3CCO_2Na (Aldrich, 98%) and NaReO₄ (Aldrich, 99.99%) were checked by AAS measurements at 589.0 nm, while those of NaDnp·H₂O (Tokyo Chemical Industries, >98.0%) and NaPic·H₂O (Wako Pure Chemical Industries, >90%)

Received March 29, 2016; Accepted April 23, 2016; Published April 30, 2016

Citation: Kudo Y, Kaminagayoshi A, Ikeda S, Yamada H, Katsuta S (2016) Brief Determination of Standard Formal Potentials for the Transfers of Several Pairing Anions across the Nitrobenzene/Water Interface by Na(I) Extraction with 18-Crown-6 Ether. J Anal Bioanal Tech 7: 319. doi:10.4172/2155-9872.1000319

Copyright: © 2016 Kudo Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

^{*}Corresponding author: Kudo Y, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan, Tel: +81432902786; Fax: +81432902874; E-mail: iakudo@faculty.chiba-u.jp

Citation: Kudo Y, Kaminagayoshi A, Ikeda S, Yamada H, Katsuta S (2016) Brief Determination of Standard Formal Potentials for the Transfers of Several Pairing Anions across the Nitrobenzene/Water Interface by Na(I) Extraction with 18-Crown-6 Ether. J Anal Bioanal Tech 7: 319. doi:10.4172/2155-9872.1000319

were done by spectrophotometric measurements at the Dnp⁻ absorption of 358 nm and the Pic⁻ one of 355, respectively. Water contents of the former three Na(I) salts and commercial 18C6 (Wako Pure Chemical Industries, 98.0%) were determined by a Karl-Fischer titration: $F_3CCO_2Na \cdot 0.0392H_2O$ (0.517%); NaReO₄ · 0.018H₂O (0.12); NaDnp·0.505H₂O (4.23); 18C6 · 0.0309H₂O (0.210). Purity of NaMnO₄·H₂O (Aldrich, \geq 97%) was determined by a redox titration with Na₂C₂O₄ (Wako, 99.96%). The concentration of a basic aqueous solution with commercial HDnp (Tokyo Chemical Industries, >98.0%) was determined spectrophotometrically at 358 nm. Nitrobenzene (Kanto Chemical Co., min. 99.5%) was washed three-times with pure water and then was kept at a state saturated with pure water. Other reagents used here were of guaranteed reagent grades. Tap water was distilled once with a stainless steel-still and purified through the Autopure system (type WT 101 UV, Millipore).

Extraction experiments

Extraction experiments were essentially the same as those [17-19] reported before for the NaMnO₄, NaO₂CCF₃ and NaReO₄ extraction by 18C6 into DCE or NB. Amounts of Na(I) extracted into the NB phases were determined by the AAS measurements, where the same atomic absorption spectrophotometer (Hitachi, Japan) as that described previously [9] was used with the same accessories; Na(I) extracted into the NB phase was two-times back-extracted into an acidic aqueous solution. All the *D* values were less than unity, where *D* denotes a distribution ratio of Na(I) species extracted into the NB phase. A stock solution of 0.02 mol dm⁻³ NaMnO₄ for the extraction experiments was diluted immediately before use and its diluted solution was used up within about 8 h [17].

Total concentrations, [NaA, HDnp or L]_t, for the extraction experiments were [NaMnO₄]_t = 3.2×10^{-3} mol dm⁻³ with [L]_t = 4.2×10^{-5} - 6.1×10^{-3} mol dm⁻³; [NaReO₄]_t = 9.0×10^{-3} with [L]_t = 4.4×10^{-5} - 4.4×10^{-3} ; [NaO₂CCF₃]_t = 3.0×10^{-3} with [L]_t = 4.4×10^{-4} - 3.6×10^{-2} ; [NaOH]_t = 3.2×10^{-4} - 2.7×10^{-3} , [HDnp]_t or [NaDnp]_t = (1.2-9.1) × 10^{-4} with [L]_t = 1.4×10^{-4} - 2.9×10^{-2} ; see the *x*-axis in Figure 1 as a reference of [L]_t. In particular, the total concentrations of mixtures of NaOH with HDnp or NaDnp were determined by the AAS measurements.

into NB at A⁻=MnO₄⁻ (triangle), Dnp⁻ (circle), ReO₄⁻ (diamond) and $F_3CO_2^{-}$ (square). See the text for the regression lines.

Data analysis

An extraction model for the data analysis was shown in Appendix A, supplementary information. In the [A⁻] calculation, the $K_{\rm HA}$ values were neglected by assuming that HA is strong acids in water for A⁻ = MnO₄⁻, ReO₄⁻ and F₃CCO₂⁻. Similarly, $K_{\rm D,HA}$ or $K_{\rm ex,HA}$ (= $K_{\rm HA} \cdot K_{\rm D,HA}$) value was neglected. Therefore, the following equation was used: [A⁻] \approx ([A]_t - Ab)/(1 + { $K_{\rm NaA}$ + ($K_{\rm NaL}K_{\rm I}/K_{\rm D,L}$)[L]_{NB}}[Na⁺]) (see Appendix A) instead of the more-exact equation [A⁻] = ([A]_t - Ab)/(1 + { $K_{\rm NaA}$ + ($K_{\rm NaL}K_{\rm I}/K_{\rm D,L}$)[L]_{NB}}[Na⁺] + ($K_{\rm HA}$ + $K_{\rm ex,HA}$)[H⁺]). Here, $K_{\rm HA}^{-1}$, $K_{\rm D,HA}$ and $K_{\rm ex,HA}$ denote the acid dissociation constant of HA in water, the distribution one of HA into and an extraction one (mol⁻¹ dm³) for HA into the NB phase, respectively, and see Appendix A for the other equilibrium constants and the symbol Ab.

Page 2 of 6

Similarly, the experiments for the NaDnp extraction system were almost performed in the pH range of more than 10. This pH value means the condition of [HDnp]/[Dnp⁻] $\leq 10^{-6}$ (\approx [H⁺] $K_{\rm HDnp} = 10^{-10.8} \cdot 10^{4.1}$ [20]). Hence, the $K_{\rm HA}$, $K_{\rm D,HA}$ and $K_{\rm ex,HA}$ values were neglected in the calculation.

Emf measurements

The following cell was used for the determination of the $K_{\rm MA}^{0}$ and $K_{\rm MLA}^{0}$ values: Ag|AgCl|3.3 mol dm⁻³ KCl|0.1 mol dm⁻³ (C₂H₅)₄NCl|test solution|Na⁺-SE. Here, the test solutions were aqueous solutions of NaCl for preparing calibration curves and those of NaDnp and its solutions with 18C6 for the $K_{\rm MA}^{0}$ - and $K_{\rm MLA}^{0}$ -determination, respectively. Experimental slopes of the calibration curves were in the ranges of 59-74 mV/decade for the NaDnp system, 57-62 for NaPic, 69-76 for NaDnp-18C6 and 65-76 for NaPic-18C6.

The emf values of the above cell were measured at $25 \pm 0.3^{\circ}$ C using a Horiba pH/ion meter (type F-23) equipped with a Horiba Na⁺-SE (type 1512A). Liquid junction potentials (ΔE_{LJ}) at the 0.1 mol dm⁻³ (C₂H₅)₄NCl|test solution interface in the cell were not corrected. An effect of this treatment was examined by determining the the K_{MA}^{0} and K_{MLA}^{0} values at MA = NaPic and MLA = Na(18C6)Pic, respectively (see below).

Results and Discussion

Potentiometric determination of ion-pair formation constants for NaDnp and Na(18C6)Dnp in water

The following equations were used for the determination of the K_{MA}^{0} and K_{MLA}^{0} values [16].

$$\log \left(K_{\rm MA} / y_{\pm}^{2} \right) = \log \left\{ K_{\rm MA}^{0} + b_{\rm s}^{0} (a_{\rm M})^{-2} \right\}$$
(2)

with $K_{MA}^{0} = [MA]/(a_M \cdot a_A)$ and

$$\log \left(K_{\text{MLA}} / y_{+}^{2} \right) = \log \left\{ K_{\text{MLA}}^{0} + b (a_{\text{ML}} \cdot a_{\text{A}})^{-1} \right\}$$
(3)

with $K_{\text{MLA}}^{0} = [\text{MLA}]/(a_{\text{ML}} \cdot a_{\text{A}})$. Here, y_{\pm} and a_{j} denote a mean activity coefficient and an activity (mol dm⁻³) of species j (= M⁺, A⁻, ML⁺) in water, respectively. Also, we assumed that the activity coefficients of MA and MLA are unity. Figures 2a and 2b show a plot of log $(K_{\text{MA}}/y_{\pm}^{2})$ versus $(a_{\text{M}})^{2}$ for MA = NaDnp and that of log $(K_{\text{MLA}}/y_{\pm}^{2})$ versus $a_{\text{ML}}a_{\text{A}}$ for MLA = Na(18C6)Dnp, respectively. Regression analyses of these plots at 298 K yielded $K_{\text{NaDnp}}^{0} = 8.1 \pm 1.2 \text{ mol}^{-1} \text{ dm}^{3}$ with $b_{s} = (1.7 \pm 0.2) \times 10^{-3} \text{ mol dm}^{-3}$ at (correlation coefficient)² (R^{2}) = 0.741 and $K_{\text{Na18C6Dn}}^{13C6Dn}$ = 78 ± 18 with $b = (1.5 \pm 0.5) \times 10^{-3}$ at $R^{2} = 0.801$. The symbols b_{s} and b refer to empirical parameters for curve fittings [16]. Solid lines shown in Figures 2a and 2b were the regression ones based on the curve fittings of the plots into Equations (2) and (3).

In order to check the accuracy of these values, the K_{NaPic}^{0} and $K_{\text{Na18GGPic}}^{0}$ values were determined potentiometrically: $K_{\text{NaPic}}^{0} = 7.7$

Page 3 of 6

Figure 2b: Plot of log (K_{MLA}/y_{\pm}^2) vs. $a_{ML}a_{A}$ for the Na (18C6) Dnp (= MLA) system.

 \pm 0.5 mol⁻¹ dm³ with $b_{\rm s} = (5.1 \pm 0.5) \times 10^{-4}$ mol dm⁻³ at $R^2 = 0.941$ and $K_{\rm Na18C6Pic}{}^0 = 136 \pm 15$ with $b = (6.8 \pm 0.5) \times 10^{-4}$ at $R^2 = 0.960$. The former value is close to that (= 4.2 mol⁻¹ dm³ [16]) reported before. On the other hand, the latter value is two-times larger than the literature one (= 62 [16]). These facts indicate that the $K_{\rm Na10C6Pip}{}^0$ value which was thus determined is essentially reliable, while the $K_{\rm Na18C6Pip}{}^0$ value is an approximate (see below for the analyses of extraction data). Additionally, it can be important that we obtained to a certain degree the reliable $K_{\rm MA}{}^0$ and $K_{\rm MLA}{}^0$ values without troublesome corrections of the $\Delta E_{\rm LJ}$ values in the emf measurements. Hence, the two values were used for the calculation [17-19] of the [Na⁺], [18C6]_{\rm NB}, and [Dnp⁻] values in the analyses on the extraction experiments (see Appendix A). Moreover, we think that this simple procedure has a possibility for the $K_{\rm MA}{}^0$ - or $K_{\rm MLA}{}^0$ -determination, namely can become the procedure without the troublesome $\Delta E_{\rm LI}$ corrections.

Determination of composition of the extracted species

Procedures for determining the composition of Na(I):L:A(-I) at L = 18C6 were the same as those [11,17-19] reported before. That is, plots

of log $(D/[A^-])$ (call this procedure plot I) and 2log D (call it plot II) versus log [L]_{NR} are useful for the composition determination of both the ion-pair (NaL+A-) extraction and the NaL+ extraction with the pairing (or counter) anion A- into the NB phase, respectively. Also, the intercepts of the plots I and II correspond to the approximate values of $\log K_{\rm ex}$ and $\log K_{\rm ex\pm},$ respectively [6,8,11,17-19]: $K_{\rm ex}$ is defined as [MLA] $_{o}/P$ and $K_{ex\pm}$ as $[ML^{+}]_{o}[A^{-}]_{o}/P$ with $P = [M^{+}][L]_{o}[A^{-}]$. Figure 1 shows their plots for the NaA extraction by 18C6 into NB. Basic data for the systems employed were a slope of 1.07 and an intercept of 1.76 at R^2 = 0.990 in the plot II for the MnO_4^- system, 0.96 and -0.37 at $R^2 = 0.942$ in that for ReO_4^- , 0.96 and -1.38 at $R^2 = 0.755$ in that for F_3CCO_2^- and 0.97 and 0.17 at $R^2 = 0.832$ in that for Dnp⁻. The above slopes being in the range of 0.9 to 1.1 [11] indicate the extraction of species with Na(I):18C6:A(-I) = 1:1:1 into the NB phase at least. In this study, all the slopes of the plots I were less than 0.9, indicating the detectable dissociation of NaL⁺A⁻ in the NB phase [17].

Determination of the $K_{D,A}$, $K_{ex\pm}$ and K_{ex} values

The $K_{D,A}$, K_{ext} and K_{ex} values were determined by the same methods as those [6,8,10,11,17] reported before, together with the $K_{1,org}$ (= K_{ex} / K_{ext}) value. That is, the following extraction constants parameters (K_{ex}^{mix}) [6,8,10,11,17] were fundamentally used for the determination:

$$\log K_{\rm ex}^{\rm mix} \approx \log \{K_{\rm ex} + K_{\rm D,A}([{\rm M}^+][{\rm L}]_{\rm o})^{-1}\}$$
(4)

$$= \log \{K_{ex} + (K_{ex\pm}/P)^{1/2}\}$$
(4a)

with $K_{ex}^{mix} = ([MLA]_{o} + [ML^{+}]_{o} + [M^{+}]_{o} + ...)/P (= Ab/P)$ under the condition of $[MLA]_{o} + [ML^{+}]_{o} >> [M^{+}]_{o} + ...$ in the o phase. Non-linear regression analyses based on Equations (4) and (4a) yield the $K_{D,A}$ and K_{exx} values, together with the K_{ex} one, respectively [6,8,10,11,17]. Figures 3 and 4 show the plots based on Equations (4) and (4a), respectively; the figures were examples of the F₃CCO₂ and Dnp⁻ systems. The R^2 values of the regression lines obtained from Equations (4) and (4a) were 0.910 and 0.773 for A⁻ = MnO₄⁻, 0.884 and 0.689 for ReO₄, 0.721 and 0.701 for F₃CCO₂ and 0.884 and 0.933 for Dnp⁻, respectively.

The K_{Lorg} value is easily calculated from the above relation [6,8,10,11,17]. Also, the $K_{\text{D,NaL}}$ (= $[\text{NaL}^+]_{\text{NB}}/[\text{NaL}^+]$) values at L = 18C6 were estimated from the relation, $I_{\text{NB}}K_{\text{D,L}}/(K_{\text{NaL}}[\text{Na}^+][\text{L}]_{\text{NB}})$, in each run. Here, $K_{\text{D,NaL}}$, $K_{\text{D,L}}$ and K_{NaL} denote the individual distribution constant of NaL⁺, that (= $[\text{L}]_{\text{NB}}/[\text{L}]$) of L into the NB phase and the complex formation constant (= $[\text{NaL}^+]/[\text{Na}^+][\text{L}]$) for NaL⁺ in water, respectively (see Appendix A): these latter two values were available in references. Table 1 lists the above equilibrium constants determined at 298 K.

A⁻	log K _k					
	$K_k = K_{ex\pm}^a$	K _{ex} ^b	К_{D,A}ь (I) с	<i>К</i> _{1,NB} ^d (<i>I</i> _{NB}) ^e	K _{D.NaL} ^f	
MnO₄⁻	$0.8_4 \pm 0.1_2$	5.12 ± 0.03	-1.95 ± 0.05 (0.0028)	4.2 ₉ ±0.1 ₃ (3.4×10 ⁻⁵)	0.8 ₅ ±0.1 ₁	
ReO₄⁻	-0.9 ₇ ±0.1 ₄	3.79 ± 0.03	-2.68 ± 0.07 (0.0081)	4.7 ₅ ±0.1 ₄ (1.8 × 10 ⁻⁵)	-0.0 ₅ ±0.1 ₃	
F ₃ CCO ₂ -	-1.2 ₈ ±0.2 ₂	3.34 ± 0.06 $2.6_1 \pm 0.7_0^{a}$	-2.7 ₆ ±0.1 ₂ (0.0026)	3.8 ₉ ±0.7 ₃ (4.8 × 10 ⁻⁶)	-0.9 ₀ ±0.2 ₉	
Dnp⁻	0.61 ± 0.06	4.5 ₅ ±0.3 ₂	-1.34 ± 0.09 (0.0012)	3.9 ₄ ±0.3 ₂ (2.9×10 ⁻⁵)	$0.4_5 \pm 0.4_1$	
Pic⁻⁰	1.5 ₁ , 2.6 ^h	7.19, 7.0 ₂	-2.5 ₀ (0.00033)	5.7 (1.0 × 10⁻⁶)	1.1	

^aValues determined by Equation (4a) with the fixed K_{e_x} values, except for the $F_3CCO_2^-$ system. ^bValues determined by Equation (4). ^clonic strength at the w phase. ^eValues calculated from $K_{e_x}/K_{e_{xx}}$. ^e/ value at the NB phase. ^tValues calculated from $I_{NB}K_{D,L}/(K_{ML}[M^*][L]_{NB})$. ^e[11]. ^hEstimated value [23].

Table 1: Fundamental data for the NaA extraction with L = 18C6 into NB at 298 K.

Page 4 of 6

Figure 3: Plot of log K_{ex}^{mix} vs. -log ($[Na^*][18C6]_{NB}$) for the NaA-18C6 system at A⁻=F₃CCO₂⁻ (square) and Dnp⁻ (circle). See the $K_{_{D,A}}$ and $K_{_{ex}}$ values in Table 1 about the data of the regression lines.

Figure 4: Plot of log K_{ex}^{mix} vs. – (1/2)log *P* for the NaA-18C6 system at A⁻=F₃CCO₂⁻ (square) and Dpp⁻ (circle). See the K_{ext} and K_{ex} values in Table 1 about the data of the regression lines.

The log K_{ex} and log $K_{ex\pm}$ values were in the orders $A^- = F_3 CCO_2^- < ReO_4^- < Dnp^- < MnO_4^- < Pic^-$. The log $K_{D,NaL}$ values were in the same order as those for log K_{ex} and log $K_{ex\pm}$. Also, the log $K_{D,A}$ values were in the order $F_3 CCO_2^- \le ReO_4^- < Pic^- < MnO_4^- < Dnp^-$.

The order of the log $K_{1,NB}$ values was $F_3CCO_2^- \le Dnp^- \le MnO_4^- < ReO_4^- < Pic.$ Ionic radii [21] of A⁻ are assumed to be H_3CCO_2 (2.32 Å) $\le F_3CCO_2^- < MnO_4^-$ (2.40) $< ReO_4^-$ (2.60) $< Dnp^- < Pic^-$. On the other hand, the ion size parameters [16,22] in aqueous solutions were in the order MnO_4^- (3.5) $< ReO_4^-$ (3.9) $< H_3CCO_2^-$ and $H_2CICCO_2^-$ (4.5 Å) $\le F_3CCO_2^- < Dnp^- < Pic^-$ (7). Here, the positions for $F_3CCO_2^-$, Dnp^- and Pic⁻ in the both orders were predicted empirically. Hence, the log $K_{1,NB}$ order suggests there are two groups: MnO_4^- and ReO_4^- ; $F_3CCO_2^-$, Dnp^- and Pic⁻. Unfortunately, we cannot now explain a reason about the $K_{1,NB}$ order.

Happily, the difference in a set of K_{NaPic}^{0} and $K_{Na18C6Pic}^{0}$ (mol⁻¹ dm³) between 4.2 and 62 [16] and 7.7 and 136 did not affect the main results

of the data analyses in the NaPic extraction by 18C6 into NB, as follows. The $K_{\rm ex}$, $K_{\rm D,Pic}$ or $K_{\rm 1,NB}$ value well agreed with each other and the $K_{\rm ex\pm}$ one calculated from 7.7 and 136 mol⁻¹ dm³ was in agreement with its corresponding value in Table 1 within the experimental error of \pm 0.5. Their logarithmic values were 7.19 \pm 0.07 at $K_{\rm ex}$, $-2.5_0 \pm 0.3_9$ at $K_{\rm D,Pic}$, $1.4_7 \pm 0.5_3$ at $K_{\rm ex\pm}$ and $5.7_2 \pm 0.5_3$ at $K_{\rm 1,NB}$. These results suggest that the extraction data for the NaDnp system with 18C6 are also reliable.

Estimate methods of the $K_{D,A}^{s}$, $\Delta \varphi_{eq}$ and $K_{D,ML}^{s}$ values at the NB/w interfaces

When the $K_{D,M}^{S}$ value, $K_{D,M}$ at $\Delta \varphi_{eq} = 0$ V, is available from some references and the K_{ext}^{ext} value was obtained from the present extraction experiment, the $K_{D,A}^{S}$ value can be easily calculated from the following thermodynamic relation:

$$\log K_{\text{D,A}}^{S} = \log K_{\text{ex+}} - \log \left(K_{\text{D,M}}^{S} \cdot K_{\text{ML-org}} \right)$$
(5)

Similarly, $K_{\rm ML,org}$ is introduced as the reference value in this equation: log $K_{\rm NaL,NB}$ {= log ([NaL⁺]_{NB}/[Na⁺]_{NB}[L]_{NB})} = 7.7 [23] at L = 18C6 and 298 K; log $K_{\rm D,Na}^{S}$ (= $-\Delta \varphi_{\rm Na}^{0'}/0.05916 = -16.90\Delta \varphi_{\rm Na}^{0'}$) = -5.18 [13] (see Appendix A).

Also, the thus-obtained $K_{D,A}^{S}$ value is introduced in

$$\Delta \varphi_{\rm eq} = (2.303 RT/F) \log (K_{\rm D,A}^{\rm S}/K_{\rm D,A})$$
(1a)

with

$$\Delta \varphi_{A}^{0'} = (2.303 RT/F) \log K_{D,A}^{S}.$$
(1b)

So we can immediately obtain the $\Delta \varphi_{\rm eq}$ and $\Delta \varphi_{\rm A}^{0'}$ values from Equations (1a) and (1b), respectively. Of course, the $K_{\rm D,A}$ values can be determined experimentally (Table 1).

Furthermore, the $K_{D,ML}^{S}$ values averaged were calculated from two procedures as follows. (A): procedure estimated from a thermodynamic cycle. Its cycle is

$$K_{\text{D,ML}}^{S} = K_{\text{ext}} K_{\text{D,L}} / (K_{\text{ML}} \cdot K_{\text{D,A}}^{S}).$$
(6)

Except for the $K_{\rm D,L}$ and $K_{\rm ML}$ values, the other values were determined here. For the two values, we adopted log $K_{\rm NaL} = 0.73$ [15] and log $K_{\rm D,L} = -1.00$ [24] at L = 18C6 (see Appendix A) and accordingly log ($K_{\rm D,L}/K_{\rm Nal}$) becomes -1.73.

(B): procedure estimated from the $\Delta \varphi_{\rm eq}$ and $K_{\rm D,ML}$ values. Its equation is

$$\log K_{\text{D,ML}}^{S} = (F/2.303RT)\Delta\varphi_{\text{eq}} + \log K_{\text{D,ML}}$$
(6a)

which is derived from $\Delta \varphi_{eq} = \Delta \varphi_{ML}^{0'} + (2.303RT/F)\log K_{D,ML}$ with log $K_{D,ML}^{S} = -(F/2.303RT)\Delta \varphi_{ML}^{0'}$ at z = 1. The experimental $K_{D,ML}$ values were individually calculated from the relation $K_{D,ML} \approx [A^-]_{NB}/[ML^+] (= I_{NB}K_{D,L}/K_{ML}[M^+][L]_{NB})$ under the approximate condition (see the footnote f in Table 1) of $[A^-]_{NB} \approx [ML^+]_{NB}$, which comes from the charge balance equation $[A^-]_{NB} = [M^+]_{NB} + [ML^+]_{NB}$ [see Equation (B1) in Appendix B, supplementary information], and then their values were averaged. Here, the fact that the $\Delta \varphi_{eq}$ value is in common for a given extraction system was over-interpreted in the mean calculation [see Equation (1a)]. The above procedures, (A) and (B), are described as fundamental ones in the calculations, although other procedures were able to be considered practically and were tried. The $K_{D,A}^{S}$, $\Delta \varphi_{eq}$ and $K_{D,NaL}^{S}$ values obtained from the above are listed in Table 2, together with the $\Delta \varphi_{A}^{0'}$ values.

The log $K_{D,A}^{S}$ order was $F_3CCO_2^{-} < ReO_4^{-} < Dnp^{-} < MnO_4^{-} < Pic^{-}$; this means that the $\Delta \varphi_A^{o'}$ values were in the same order. This order

A⁻	log <i>K</i> _{D,A} ^{S a} (∆ <i>φ</i> _A ^{0′ b} /V)	$\Delta oldsymbol{arphi}_{eq}^{c}/V$	log K _{D,NaL} ^{S d}
MnO₄⁻	-1.6 ₈ , -1.16 ^e (-0.1 ₀ , -0.069)	0.01 ₆ , 0.047 ^f	0.7 ₂ , 0.5 ₈ ^g , 0.05 ₉ ^{f,g}
ReO ₄ -	-3.4 ₉ (-0.2 ₁)	-0.04 ₈	0.7 ₂ , 0.7 ₆ ⁹
F ₃ CCO ₂ ⁻	-3.8 ₀ (-0.2 ₂)	-0.062	0.7 ₂ , 0.1 ₄ ^g
Dnp⁻	-1.9 ₁ , -2.0 ^e (-0.1 ₁ , -0.1 ₂)	-0.03 ₄ , -0.03 ^f ₆	0.7 ₉ , 1.0 ₂ ^g , 1.1 ₂ ^{f,g}
Pic ^{-h}	0.05 ^e (0.0030)	0.1 ₅ , 0.11 ⁱ	-0.2 ₇ , -1.4 ₃ ^g , -0.7 ₅ ^{i,j}
Without A-	k	^k	0.7′

^aValues calculated from Equation (5) at M = Na. ^bValues reduced from the log $K_{D,A}^{-5}$ values with Equation (1b). ^cValues calculated from Equation (1a). ^dValues calculated from the procedure (**A**). ^e[13]. ¹Value calculated from Equation (1a) with the value of the footnote e. ^aValues calculated from the procedure (**B**). ^b[11]. ¹Value calculated from the charge balance equation for the NB phase without any approximations [8] and Appendix B. ¹Value calculated from the procedure (**B**) with the value of the footnote i. ^kNot have the corresponding values. ¹Value obtained at 298 K and I_{NB} = 0.05 mol dm⁻³ (Bu₄N⁺BPh₄⁻) from ion-transfer polarographic measurements [25].

Table 2: Log $K_{D,A}^{S}$, $\Delta \phi_{a}^{\circ,\circ}$, $\Delta \phi_{eq}$ and log $K_{D,NeL}^{S}$ values for the NaA extraction with L= 18C6 into NB at 298 K.

was reflected to the log K_{ex} and log $K_{ex\pm}$ orders. The $K_{D,A}^{-S}$ values for $A^{-} = MnO_4^{-}$ and Dnp^{-} were close to those [13,23] reported before. Also, the log $K_{D,NaL}^{-S}$ order was Pic⁻ < $F_3CCO_2^{-} \approx MnO_4^{-} \approx ReO_4^{-} \leq Dnp^{-}$. Especially, the latter four values (0.7-0.8 = log $K_{D,NaL}^{-S}$) were in agreement with that (0.7 [25]) at the NB/w interface directly-determined by ion-transfer-polarographic measurements. These facts suggest that 0.7 is appropriate to the log $K_{D,NaL}^{-S}$ value.

Correlation between log $K_{\text{ex\pm}}$ and $\Delta \varphi_{\text{eq}}$

A plot of log $K_{ex\pm}$ versus $\Delta \varphi_{eq}$ gave a positive correlation: log $K_{ex\pm}$ = $(13_{\cdot_2} \pm 2_{\cdot_9})\Delta \varphi_{eq} + (0.3_8 \pm 0.2_7)$ at $R^2 = 0.748$ (Figure 5); the point of MnO₄⁻ due to ref. [13] was removed from the regression calculation because of uncertainty of the $\Delta \varphi_{eq}$ value. This plot can come from Equation (5). For example, by adding the $\Delta \varphi_{eq}$ term in the both sides of Equation (5), Equation (5) can be modified as

$\log K_{\text{ex\pm}} = 16.90 \Delta \varphi_{\text{eq}} + \log K_{\text{D,A}} + \log (K_{\text{D,Na}}^{\text{S}} \cdot K_{\text{NaL,NB}}) (5a)$

with log $K_{D,A} = -16.90\Delta\varphi_{eq} + \log K_{D,A}^{S}$ [see Equation (1a) and Appendix B] at 298 K and the rhs of Equation (5a) becomes $16.90\Delta\varphi_{eq} + \log K_{D,A} + 2.5_2$. Also, the log $K_{D,A}$ values for the five extraction systems were in the range of -2.8 to -1.3. Therefore, the value of log $K_{D,A} + 2.5_2$ can be estimated at -0.3 to 1.2. This range which corresponds to the intercept of the plot includes the experimental intercept (= 0.4). This fact indicates that the plot is essentially based on Equation (5a), namely Equation (5).

Moreover, the log $K_{\text{D,A}}$ values can cause the larger deviation of the plots from the regression line (Figure 5), because their values are not constant among A⁻ employed. This is proved by the plot of log $(K_{\text{ext}}/K_{\text{D,A}})$ versus $\Delta \varphi_{\text{eq}}$. The regression analysis of this plot yielded the equation, log $(K_{\text{ext}}/K_{\text{D,A}}) \{= \log ([\text{NaL}^+]_{\text{NB}}/[\text{Na}^+][\text{L}]_{\text{NB}})\} = 15._{3}\Delta \varphi_{\text{eq}} + 2._{4}$ at $R^2 = 0.896$. This improvement on R^2 clearly shows a variance effect of log $K_{\text{D,A}}$.

Similar correlations have been observed in the plots of log $K_{ex\pm}$ versus $\Delta \varphi_{eq}$ for the NaPic extraction with the four L into the two diluents [10,11]. These plots are based on the other modified form of Equation (5a): log $K_{ex\pm} = 16.90(-\Delta \varphi_{eq}) + \log K_{D,Na} + \log (K_{D,Pic}^{S.}K_{NaL,org})$ [11] at org = DCM and DCE. For the Bz extraction system, a similar plot has been obtained, but its slope (= 84 V⁻¹ [10]) was much larger than the theoretical value, 16.90 (= F/2.303RT) at 298 K. These facts also support that Equation (5a) is effective for an explanation of the above correlation.

J Anal Bioanal Tech ISSN: 2155-9872 JABT, an open access journal

Correlation between $\log K_{\text{D,NaLA}}$ and $\log K_{\text{D,A}}^{s}$

The log $K_{D,NaLA}$ {= log ([NaLA]_{NB}/[NaLA])} value was calculated from the thermodynamic relation [15,17].

$$\log K_{\text{D,NaLA}} = \log K_{\text{ex}} - \log \left(K_{\text{NaL}} \cdot K_{1} \right) + \log K_{\text{D,L}}; \tag{7}$$

Page 5 of 6

since NaLA is a neutral ion pair, its distribution constant naturally satisfies the condition of $\Delta \varphi_{eq} = 0$ V [26]. Here, the symbol K_1 is defined as [NaLA]/[NaL⁺][A⁻] (see Appendix A) and its values slightly changed with changes of *I*. The log $K_{D,NaLA}$ values obtained were 1.01 for A⁻ = MnO₄⁻, -0.44 for ReO₄⁻, -0.97 for F₃CCO₂⁻ and 0.96 for Dnp⁻; its value for Pic⁻ was reported to be 3.68 [11]. Figure 6 shows a plot of log $K_{D,NaLA}$ versus log $K_{D,A}^{-S}$ for the present extraction systems with A⁻. There was a good linear correlation between them at $R^2 = 0.974$. This result indicates that a distribution property of Na(18C6)A into the NB phase reflects that of A⁻. In other words, it means that the following relation

Figure 5: Plot of log K_{ext} vs. $\Delta \phi_{\text{eq}}$ for the NaA extraction by 18C6 into NB. The regression line was log $K_{\text{ext}} = (13_2 \pm 2_9) \Delta \phi_{\text{eq}} + (0.3_8 \pm 0.2_7)$ at $R^2 = 0.748$, except for the triangle point of MnO₄⁻. See Tables 1 and 2 for the plot data.

Figure 6: Plot of log $K_{D,NaLA}$ vs. log $K_{D,A}^{-5}$ at L=18C6 and A⁻=MnO₄⁻ (2 data), ReO₄⁻, F₃CCO₂⁻, Dnp⁻ (2 data) and Pic⁻. The regression line was log $K_{D,NaLA}$ =(1.15 ± 0.09)log $K_{D,A}^{-5}$ +(3.3₂ ± 0.2₃) at R^2 =0.974, except for the triangle point of MnO₄⁻.

Citation: Kudo Y, Kaminagayoshi A, Ikeda S, Yamada H, Katsuta S (2016) Brief Determination of Standard Formal Potentials for the Transfers of Several Pairing Anions across the Nitrobenzene/Water Interface by Na(I) Extraction with 18-Crown-6 Ether. J Anal Bioanal Tech 7: 319. doi:10.4172/2155-9872.1000319

holds in the present extraction systems: log $K_{\text{D,NaLA}} = \log K_{\text{D,A}}^{S} + \log (K_{\text{NaL,NB}}/K_{\text{NaL}}) + \log (K_{\text{D,Na}}^{S} - K_{\text{D,18C6}}) + \log (K_{1,\text{NB}}/K_1) \approx \log K_{\text{D,A}}^{S} + 0.7_2 + \log (K_{1,\text{NB}}/K_1)$, although the coefficient of log $K_{\text{D,A}}^{S}$ was somewhat larger than unity. Here, this relation is derived from log $K_{\text{ex}} = \log K_{\text{ext}} + \log K_{1,\text{NB}}/K_1$ (see Equations (6) and (7)]. The average values of K_1 /mol⁻¹ dm³ were $10^{1.77}$ for $A^- = \text{Pic}^-$, $10^{2.31}$ for MnO_4^- , $10^{2.43}$ for ReO_4^- , $10^{1.86}$ for Dnp^- and $10^{2.51}$ for $F_3\text{CCO}_2^-$. Therefore, an estimate of the intercept, $0.7_2 + \log (K_{1,\text{NB}}/K_1)$, becomes in the range of 2.1 to 4.7. Its experimental value was $3.3_2 \pm 0.2_3$ (see the caption in Figure 6), overlapping this estimate. On the other hand, a plot of log $K_{\text{D,NaLA}}$ versus log $K_{\text{D,A}}$ at $\Delta \varphi_{\text{eq}} \neq 0$ V did not yield the correlation $(R^2 = 0.038)$.

Conclusion

The authors clarified the presence of $\Delta \varphi_{eq}$ at the NB/w interfaces in the NaA extraction systems with 18C6, as well as the NaPic extraction one. Also, the positive correlation of log $K_{ex\pm}$ to $\Delta \varphi_{eq}$ among A⁻ was observed in a given combination of Na⁺, NB, and 18C6. This fact makes the previously-reported correlation among L in given combinations of NaPic and diluents more-sure. Moreover, it was demonstrated that this method makes the $\Delta \varphi_A^{0'}$ - or $K_{D,A}^{-S}$ -determination of a single A⁻ having the lower extraction-ability easier. In particular, using the more general L, such as 18C6, is important for the present method, because this promises the high versatility of the method.

References

- 1. Rais J (1971) Individual Extraction Constants of Univalent Ions in the System Water-Nitrobenzene. Collect Czech Chem Commun 36: 3253-3262.
- Sanchez Vallejo LJ, Ovejero JM, Fernández RA, Dassie SA (2012) Single Ion Transfer at Liquid/Liquid Interface. Int J Electrochem 462197.
- Ohkouchi T, Kakutani T, Sanda M (1991) Electrochemical Study of the Transfer of Uncouplers across the Organic/Aqueous Interface. Bioelectrochem Bioenerg 25: 71-80.
- Lagger G, Tomaszewski L, Osborne MD, Seddon BJ, Girault HH (1998) Electrochemical Extraction of Heavy Metal Ions Assisted by Cyclic Thioether Ligands. J Electroanal Chem 451: 29-37.
- 5. Kudo Y, Imamizo H, Kanamori K, Katsuta S, Takeda Y, et al. (2001) On the Facilitating Effect of Neutral Macrocyclic Ligands on the Ion Transfer across the interface between Aqueous and Organic Solutions Part III Competitive Facilitated Ion-Transfer. J Electroanal Chem 509: 128-138.
- Kudo Y, Ogihara M, Katsuta S, Takeda Y (2014) An Electrochemical Understanding of Extraction of Silver Picrate by Benzo-3m-Crown-m Ethers (m = 5, 6) into 1,2-Dichloroethene and Dichloromethane. Amer J Anal Chem 5: 433-444.
- Kudo Y, Takeuchi T (2014) On the Interfacial Potential Differences for the Extraction of Alkaline-Earth Metal Picrates by 18-Crown-6 Ether Derivatives into Nitrobenzene. J Thermodyn Catal 5: 133.
- Kudo Y, Katsuta S (2015) On an Expression of Extraction Constants without the Interfacial Equilibrium-Potential Differences for the Extraction of Univalent and Divalent Metal Picrates by Crown Ethers into 1,2-Dichloroethane and Nitrobenzene. Amer J Anal Chem 6: 350-363.
- Kudo Y, Katsuta S, Ohsawa Y, Nozaki K (2015) Solvent Extraction of Cadmium Picrate by 18-Crown-6 Ether into Several Less-polar Diluents and Nitrobenzene: Re-evaluation of the Corresponding Overall Extraction Systems. J Thermodyn Catal 6: 146.
- 10. Kudo Y, Nakamori T, Numako C (2016) Extraction of Sodium Picrate by 3m-Crown-m Ethers and Their Mono-benzo Derivatives (m = 5, 6) into Benzene: Estimation of Their Equilibrium Potential Differences at the Low-polar Diluent/ Water Interface by an Extraction Method. Journal of Chemistry.
- Kudo Y, Amano T, Ikeda S (2016) Extraction of Sodium Picrate by Several Crown Ethers into Dichloromethane, 1,2-Dichloroethane, and Nitrobenzene: Estimation of Their Interfacial Equilibrium-potential Differences by an Extraction Method. Chemistry Journal.
- Levitskaia TG, Maya L, Van Berkel GJ, Moyer BA (2007) Anion Partitioning and ion-Pairing Behavior of Anions in the Extraction of Cesium Salts by 4,5-Bis(tertoctylbenzo)dibenzo-24-crown-8 in 1,2-Dichloroethane. Inorganic Chemistry 46: 261-272.

13. Kudo Y, Harashima K, Hiyoshi K, Takagi J, Katsuta S, et al. (2011) Extraction of Some Univalent Salts into 1,2-Dichloroethane and Nitrobenzene: Analysis of Overall Extraction Equilibrium Based on Elucidating Ion-pair Formation and Evaluation of Standard Potentials for Ion Transfers at the Interface between Their Diluents and Water. Anal Sci 27: 913-919.

Page 6 of 6

- 14. Kudo Y, Horiuchi N, Katsuta S, Takeda Y (2013) Extraction of Cadmium Bromide and Picrate by 18-Crown-6 Ether into Various Less-polar Diluents: Analysis of Overall Extraction Equilibria Based on Their Component Equilibria with Formation of Their Ion Pair in Water. J Mol Lig 177: 257-266.
- 15. Takeda Y (2002) Extraction of Alkali Metal Picrates with 18-Crown-6, Benzo-18crown-6, and Dibenzo-18-crown-6 into Various Organic Solvents. Elucidation of Fundamental Equilibria Governing the Extraction-ability and -selectivity. Bunseki Kagaku (Analytical Chemistry) 51: 515-525 (in Japanese).
- Kudo Y (2013) Potentiometric Determination of Ion-Pair Formation Constants of Crown Ether-Complex Ions with Some Pairing Anions in Water Using Commercial Ion-Selective Electrodes. InTech-Open Access Publisher, Croatia.
- 17. Kudo Y, Harashima K, Katsuta S, Takeda Y (2011) Solvent Extraction of Sodium Permanganate by Mono-benzo 3m-Crown-m Ethers (m = 5, 6) into 1,2-Dichloroethane and Nitrobenzene: a Method which Analyses the Extraction System with the Polar Diluents. Int J Chem 3: 99-107.
- Kudo Y, Fujihara R, Ohtake T, Katsuta S, Takeda Y (2008) Evaluation of the Hydrophilic Properties of Sodium Ion-pair Complexes with 3m-Crown-m Ethers (m = 5, 6) and Their Benzo-derivatives by Solvent Extraction. Anal Sci 24: 999-1003.
- Kudo Y, Fujihara R, Katsuta S, Takeda Y (2007) Solvent Extraction of Sodium Perrhenate by 3m-Crown-m Ethers (m = 5, 6) and Their Mono-benzo-derivatives into 1,2-Dichloroethane: Elucidation of an Overall Extraction Equilibrium Based on Component Equilibria Containing an Ion-pair Formation in Water. Talanta 71: 656-661.
- 20. Terada H (1981) The Interaction of Highly Active Uncouplers with Mitochondria. Biochim Biophys Acta 639: 225-242.
- Shanonn RD (1976) Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Cryst A32: 751-767.
- Kielland J (1937) Individual Activity Coefficients of Ions in Aqueous Solutions. J Amer Chem Soc 59: 1675-1678.
- 23. Kudo Y, Katsuta S, Takeda Y (2012) Evaluation of Overall Extraction Constants for the Crown Ether-Complex Ions of Alkali and Alkaline-Earth Metal with Counter Picrate Ions from Water into Nitrobenzene Based on Their Component Equilibrium Constants. J Mol Liq 173: 66-70.
- Iwachido T, Minami M, Sadakane A, Tôei K, (1977) The Coextraction of Water into Nitrobenzene with Alkaline Earth 2,2',4,4',6,6'-Hexanitrodiphenylaminates in the Presence of Crown Ethers. Chemistry Letters 1511-1514.
- 25. Kudo Y, Miyakawa T, Takeda Y, Matsuda H (1995) Ion-transfer Polarographic Study of the Distribution of Alkali and Alkaline-Earth Metal Complexes with 3m-Crown-m Ether Derivatives (m = 6, 8) between Water and Nitrobenzene. J Inc Phenom Mol Recogn Chem 26: 331-341.
- 26. Kudo Y (2015) On the Expression of Extraction Constants without Equilibrium Interfacial Potential Differences. Review of Polarography 61: 87-92 (in Japanese).