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Introduction
Alzheimer’s disease (AD) is a devastating neurodegenerative 

disorder and the most common cause of dementia among aged people 
[1,2]. AD may also result in abnormality in mood and personality 
[3,4]. Alzheimer’s disease is named after Dr. Alois Alzheimer, who first 
described this disease in his patient in 1906 [5]. AD represents one of the 
biggest diseases without effective treatment confronting human beings 
during this millennium [6]. Today, a new AD patient is diagnosed every 
66 s in the United States. By 2050, one new case of AD is expected to 
develop every 33 s, resulting in nearly 1 million new cases per year 
[2]. In the US alone, an estimated 5.5 million patients are diagnosed 
with AD, a devastating neurodegenerative disease without effective 
treatment [4,7]. By 2050, the number of AD patient is expected to grow 
to 13.8 million [2,4]. Death usually occurs within 5 to10 years after a 
clinical diagnosis [8]. The total estimated worldwide financial burden of 
dementia was $604 billion in 2010 [9]. AD not only seriously affects the 
patient’s physical health and quality of life, but also adds a heavy burden 
to their family and society. It is urgent to understand AD pathogenesis 
and develop the means of prevention and treatment. Considering the 
rapidly increased elderly population, AD has become a major health 
problem for human beings.

AD Pathophysiology and Treatment Status
AD is a chronic devastating neurodegenerative disease without 

effective treatment [10]. Current approaches for management focus on 
helping patients slow or delay the symptoms of cognitive dysfunction 
[11,12]. There are many hypotheses about the pathogenesis of AD 
such as amyloid hypothesis, tau protein hypothesis, genetic hypothesis, 
excitatory amino acid hypothesis, chronic inflammation hypothesis, 
oxygen free radicals leading to neurodegenerative disease hypothesis, 
and neuronal apoptosis hypothesis. Amyloid cascade hypothesis is 

widely presumed to cause AD pathogenesis [13-15]. The autopsy of the 
pathological features is amyloid-β (Aβ) aggregates composed of senile 
plaques, intracellular neurofilament consisting of hyperphosphorylated 
tau protein deposits neurofibrillary tangles of tau (NFT) and loss of 
cerebral cortex caused by atrophy [16-18]. Many potential treatments 
for AD focused mainly on reducing levels of amyloid-β (Aβ) burden in 
the brain and inhibiting Aβ aggregation and promotion of Aβ clearance 
[19-21]. Despite the tremendous research looking into the molecular 
mechanisms of Aβ pathology, it is still unclear about the root causes of 
the AD related cognitive dysfunction [22,23]. Unfortunately, no drug 
of the amyloid-targeting the cascade is in the process to be approved 
for treatment of AD in patients [22,24]. Because Tau pathology play 
important roles in neurodegeneration, which is usually seen together 
with amyloid pathology, researchers also tried to develop new drugs 
targeting hyperphosphorylated NFT [22,25]. Studies have shown that 
there is a strong link between NFT deposition and neuronal loss related 
cognitive dysfunction [26-28]. Recent studies have suggested some tau 
genetic markers are associated with AD [29,30]. Unfortunately, there are 
no new drugs targeting tau pathology successful in patients up to now, 
although efforts are continued [22].  
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In order to block the progression of the disease in AD, we need 
to interfere with the pathogenic steps responsible for the clinical 
symptoms. Beside amyloid and tau pathology, alternative theories 
have been proposed for the pathogenesis of AD, such as inflammation, 
oxidative damage, iron deregulation, and cholesterol metabolism, etc. 
[31,32].

Role of Calcium Signalling in Physiological Neural 
Processes and Dysregulation of Calcium Signalling in 
the Pathogenesis of AD

The calcium ion (Ca2+) is an important second messenger in the 
function and structure of nerve cell circuits in the brain. Ca2+ signalling 
regulates multiple neuronal functions, such as neuronal growth, 
exocytosis, synaptic plasticity and cognitive function [33-35]. Therefore 
disturbances in Ca2+ homeostasis can affect the neuron normal function 
and structure. A number of studies have shown that disruption of 
intracellular Ca2+ homeostasis plays important roles in orchestrating 
dynamic of the neuropathology of AD and associated memory loss, 
cognitive dysfunction [36-41]. 

Studies show that Ca2+ level in those neurons close to amyloid 
deposits is higher than normal resting level [42]. The elevated resting 
Ca2+ environment cloud promotes mechanisms of negative plasticity 
[43]. The mechanisms are an increase in calcineurin (CaN) expression 
and activity by elevated intracellular level. CaN is a Ca2+ signalling 
protein activated calmodulin (CaM), which is sensitive to subtle rises 
in intracellular Ca2+ levels. When CaN is activated, it is able to activate 
additional phosphatases, such as PP1, which further induce the long-
term depolarization (LTD) that erases memories [44,45]. With blinding 
of Ca2+/CaM, CaMKII holenzymes can be activated. CaMKII also plays 
an important role in synaptic plasticity and memory formation. T286-
autophosphorylation of αCaMKII is impaired at synapses in AD using 
post-mortem analyses and studies. The T286-autophosphorylation 
of αCaMKII in the hippocampus rescues deficits in contextual 
memory formation [46]. Studies suggested that neurotrophin-induced 
enhancement of p(T286)-αCaMKII leads to rescue of Aβ-induced 
deficits in LTP at hippocampal synapses [47]. Further, CaMKII has 
also been suggested to be a tau kinase. Studies with AD brain find 
that αCaMKII expression in cells usually co-localises with tau mRNA 
or NFT [48-50]. So, CaMKII dysregulation may therefore be closely 
related with Alzheimer’s disease. Small dose of sAβ1-42 impaired Ca2+ 
clearance from presynaptic terminals and increased the basal Ca2+ 
concentration in cultured rat hippocampal neurons. This caused an 
increase in the phosphorylation of Ca2+/calmodulin-dependent protein 
kinase IV (CaMKIV) and its substrate synapsin, which markedly 
inhibited synaptic vesicle (SV) trafficking along axons between 
synapses. sAβ1-42 prevents neurons from forming new synapses or 
adjusting strength and activity among neighboring synapses [51]. 
CaMKIV is crucially involved in Ca2+ induced CREB phosphorylation. 
Neural activity dependent CaMKIV signalling in the neuronal nucleus 
plays an important role in the consolidation/retention of hippocampus-
dependent long-term memory [52].

Researches demonstrated that hTau accumulation caused 
remarkable dephosphorylation of cAMP response element binding 
protein (CREB) in the nuclear fraction both in vivo and in vitro studies. 
Activity-dependent activation of the transcription factor CREB is at a 
central converging point of pathways and mechanisms activated during 
the processes of synaptic strengthening and memory formation, as 
CREB phosphorylation leads to transcription of memory-associated 
genes [53]. Disruption of these mechanisms in AD results in a reduction 

of CREB activation with accompanying memory impairment [54]. 
hTau accumulation impairs synapse and memory by CaN-mediated 
suppression of nuclear CaMKIV/CREB signalling [55]. 

Due to spatial and temporal patterns of amyloid deposition, which 
does not correlate very well with the clinical degree of dementia in 
Alzheimer disease, the amyloid hypothesis remains controversial. In 
contrast, cognitive decline correlates very well with synapse loss [56]. 
It is actually the occurrence of ‘negative’ lesions such as synaptic loss 
which precedes neuronal loss that best correlates with the advancement 
of cognitive decline. Several reports have noted the progressive loss of 
synaptic boutons and other synaptic elements in brains of patients with 
symptoms ranging from mild cognitive impairment (MCI) to early-
mild AD [57,58]. In vitro studies have shown that Aβ oligomers can 
directly bind to synaptic sites [59] and reduce long-term potentiation 
(LTP) [60,61]. 

In early AD, mild cognitive impairment may be due to synaptic 
dysfunction with no widespread synaptic loss and neurodegeneration. 
Soluble Aβ oligomers can adversely affect synaptic structure and 
plasticity even at extremely low concentrations. In many cases, AD 
transgenic mice show abnormal synaptic transmission and impaired 
LTP usually before plaque formation [62,63]. Ca2+ is an essential 
mediator of basal synaptic transmission, short and long forms of 
synaptic plasticity, and dendritic spine morphology [64]. In AD mouse 
models at asymptomatic or early disease stages, the increased Ca2+ 

affects the synaptic pathophysiological processes by increasing both 
frequency of spontaneous synaptic potentials and negative plasticity 
[65,66].

Negative plasticity was proposed to explain cognitive decline in 
older people. Their framework describes a self-reinforcing, downward 
spiral of negative brain plasticity whereby declining brain function is 
attributable to a combination of disuse reduced quality of sensory-
perceptual processing and weakened neuromodulatory control. In 
combination, these factors increase reliance on simplified cognitive 
processing at the expense of more complex processing capacity [67].

Additionally, Aβ plaque deposition was needed to induce calcium 
overload [42]. Aβ oligomers can increase cytosolic calcium through 
forming novel pores on plasma membranes and can stimulate 
mGluR5 which increases InsP3 production and Ca2+ release [68-71]. 
Recent studies showing that intracellular Aβ oligomers can stimulate 
G-protein-mediated Ca2+ release from the Endoplasmic reticulum (ER) 
through InsP3 [72]. The ER is a particularly intriguing organelle that 
actively removes Ca2+ from the cytoplasm and can release stored Ca2+ 
into cytosolic space through ER membrane calcium channel receptors, 
Inositol 1,4,5-Trisphosphate receptor (InsP3R) or the ryanodine 
receptor (RYR). Excessive Ca2+ release from the ER via activation of 
RYR and/or InsP3R is associated with amyloid and tau pathology and 
contributes to memory and learning loss in AD40 [73,74], while RYR 
can be activated by Ca2+ itself and may amplify the function of InsP3R 
via a calcium activated calcium release mechanism [75,76]. This may 
decrease or deplete Ca2+ levels in the ER.  The abnormally low Ca2+ level 
will cause a decrease in vATPase production due to the protein-folding 
reaction depending on high concentrations of Ca2+ in the ER [77]. 
When vATPase maturation in the ER is disturbed, the proper pH value 
in lysosomes can’t be maintained due to decreased vATPase, which 
leads to impaired lysosomal acidification and function and subsequent 
autolysosome and autophagy function. It is interesting to note that ER 
Ca2+signaling abnormalities; plasticity and memory deficits precede 
detectable amyloid and tau pathology in AD [36].
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ER is an important subcellular organelle for protein synthesis, 
modification and folding. ER stress and associated unfolded protein 
accumulation is triggered by the disruption of Ca2+homeostasis. ER 
stress can stimulate cells to cope with unfolded protein responses, 
which promote protein folding or degradation of abnormal folding 
proteins [78]. Protein misfolding and aggregation are common 
pathogenic mechanisms in a number of human diseases, including 
AD. Perturbations of the function or integrity of the ER such as the 
accumulation of misfolded proteins in the ER lumen, results in a 
condition-termed ER stress. To avert this condition, cells activate an 
integrated array of adaptive intracellular signaling cascades known as 
the unfolded protein response (UPR). ER stress is induced during AD, 
and has been indirectly implicated as a mediator of Aβ neurotoxicity. 
In neurodegenerative diseases like AD, these abnormal reactions may 
play an important role [79]. ER stress could be the consequence of 
aberrant cellular signaling induced by the interaction of Aβ oligomers 
with membrane receptors, although these mechanisms are possible 
contributors to Aβ neuropathology.

Aβ42 expression induces strong ER stress response and the 
strongly activated UPR failure to buffer the misfolded protein load, 
leading to cellular dysfunction and a shorter chronological life span 
(CLS) [80]. Multiple studies have demonstrated that Aβ oligomers 
can activate PKR and induce ER stress by eliciting the TNF-α pathway 
[81,82]. Additionally, Aβ may stimulate ER Ca2+ release through 
ryanodine receptors and IP3 receptors, which triggers ER stress, 
neuronal apoptosis and mitochondrial fragmentation [72,83]. ER 
stress and hyperphosphorylated tau could be induced by each other 
in a cycle to propagate AD pathology [84]. Furthermore, studies have 
shown that mutations in PS1 inhibit ER stress-induced lREla PERK 
autophosphorylation and eIF2α phosphorylation in ER membranes .It 
has been suggested that familial AD-linked PS1 mutations suppress the 
activation of IRE-1α. This predisposes cells to become more susceptible 
to ER stress due, in part, to decreases in protein chaperone synthesis as a 
result of reduced UPR induction [85,86]. The aberrantly spliced isoform 
of PS2 (PS2V) is also linked to AD. Similar to the PS1 mutations, this 
isoform increases the vulnerability of the cell to ER stress [87].

The most abundant microtubule-associated protein is the Tau 
protein. In healthy brains, the combination of tau protein and 
tubulin promotes its polymerization to form microtubulins. Tau 
proteins then combine with microtubulins to maintain microtubule 
stability and induce microtubules into bundles. However, tau protein 
in the brain of AD patients is abnormally hyper phosphorylated, 
which leads to biological function loss [88]. Temporarily increased 
intracellular calcium signaling would induce prolonged increased tau 
phosphorylation via glycogen synthase kinase 3-β (GSK-3β) pathway 
in human neuroblastoma SH-SY5Y cells [89]. On the other hand, when 
the hippocampal and cortical neurons were cultured with tau protein, 
significantly increased intracellular calcium through muscarinic 
receptor was observed [90]. The cytoplasmic protein tau normally 
serves to stabilize microtubules which form ‘tracks’ that facilitate 
intracellular vesicle trafficking and axonal elongation and maturation. 
This is highlighted by the finding that knocking down tau leads to severe 
neurite growth defects in primary cerebellar neurons [91]. However, 
certain insults cause an imbalance between the activities of tau kinases 
and phosphatases that lead to the abnormal phosphorylation of tau 
[92]. In its hyperphosphorylated state, tau becomes soluble and, in turn, 
polymerizes to form oligomers and/or NFTs [93].

Emerging evidence indicate that many calcium-related proteins 
are involved in the phosphorylation of tau. In vivo experiment 

CaKMII-α and hyper phosphorylated tau protein in hippocampus 
slices using double-labeling immunofluorescence methods, indicats 
that CaKMII-α might be involved in tau phosphorylation [48]. In the 
meantime, an N-methyl-D-aspartate (NMDA) receptor antagonist has 
been clinically used as an effective symptomatic treatment. Another in 
vitro experiment further confirmed phosphorylation of tau protein that 
was catalyzed by phosphatidylserine and phophatidylethanolamine via 
CaKM, which was identified by sodium dodecyl sulfate-polyacrylaide 
gel electrophoresis [94]. Calcium phosphatase calcineurin influenced 
tau metabolism. Reduced calcineurin activity would increase 
extracellular phosphorylated tau [95]. Similarly, the calcium-induced 
phosphorylation of tau mediated by glycogen synthase kinase 3 (GSK3) 
and cyclin-dependent kinase 5 (CDK5) could be dephosphorylated by 
calcineurins [96]. Meanwhile, increased activity of calpains regulated 
GSK3 and Cdk5 from the initial too late stages of the disease leads 
to hyperphosphorylated tau, synaptic degeneration and memory 
loss [97-99]. It was proposed that calpain inhibitor could be a novel 
treatment for the disease. Rao et al. reported CDK5 activation, tau 
hyperphosphorylation, and tau accumulation in brains of Tau P301L 
mice that were rescued when the mice were treated with selective 
calpain inhibitor [100].

The presenilin-1 (PS1) and Presenilin-2 (PS2) genes have been 
identified in AD pathogenic most related to early onset, autosomal 
dominant type [101]. Mutations in PS1 that cause early-onset inherited 
AD increased Ca2+ release through the ER InsP3R and RYR [102-104].
The number and function of RYRs are abnormally increased in different 
brain regions of AD mice and patients, which may exaggerate Ca2+ 
signalling in synaptic terminals and thereby render them vulnerable 
to dysfunction and degeneration in the settings of aging and amyloid 
accumulation in AD [105-107]. Recent studies suggested that mutated 
PS2 or amyloid precursor protein (APP) also contributed to the calcium 
dysregulation and pathogenesis of AD by over activation of RYR37 
[104,108-110]. Obviously, the ryanodine receptor over activation 
and abnormal Ca2+ release from the ER play important roles in AD 
pathogenesis and the adequate inhibition RYRs over activation may be 
a new therapeutic target for the treatment of AD. 

Dantrolene is a known antagonist of the RYR and is used clinically 
to treat malignant hyperthermia, muscle spasms and neuroleptic 
malignant syndrome. Dantrolene has been demonstrated to mitigate 
the amyloid pathology, synapse and memory loss in various AD tissue 
culture and animal models [73,75,111,112]. Therefore, dantrolene is 
theoretically a potential drug to reverse the calcium dysregulation and 
neuropathology in AD and restore cognitive dysfunction. In fact, our 
previous study has demonstrated that that long-term oral treatment 
with dantrolene in aged 3xTg-AD mice significantly decreased 
intraneuronal amyloid accumulation in the hippocampus. Studies show 
that dantrolene through the modulation of RyR-mediated Ca2+ release 
from ER and β- and γ-secretases activities leads to the reduction of Aβ 
production to prevent learning and memory decline [113]. It has been 
recently proposed that intraneuronal free oligomer of amyloid, rather 
than aggregated plaques, play important roles in synapse dysfunction 
and loss, as well as neurodegeneration [114-116]. The exact molecular 
mechanism of inhibitory effects of dantrolene on RYR is not clear, while 
recent studies suggested that certain cytosolic calcium concentration of 
magnesium ions are needed for effective RYR inhibition by dantrolene 
[117]. Overall, recent pilot studies suggested that calcium dysregulation 
in AD may be a potential therapeutic treatment for AD. Considering the 
earlier development of calcium dysregulation than amyloid pathology 
and importance of early treatment even before clinical symptoms, 
drugs targeting calcium dysregulation, such as dantrolene, may have 
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good potential to facilitate the preclinical treatment in AD as possible 
effective therapeutic drugs (Figure 1).

Mutations in presenilin cause increased Ca2+ release from the 
ER through InsP3 (InsP3R) and ryanodine (RYR) two primary 
calcium channels. Abnormal elevation of cytosolic Ca2+ increase 
phosphoarylation of APP protein and activities of β- and γ-secretases, 
resulting in increased production of Aβ42 and Aβ oligomers, which 
in turn, further promote InsP3R-mediated Ca2+ release from ER by 
activating postsynaptic mGluR5 mediated InsP3 production. RYR can 
be activated by Ca2+ itself and therefore may function as an amplifier 
for Ca2+ release from the ER triggered by initial InsP3R activation. 
Abnormal decrease or depletion of ER Ca2+ level result in accumulation 
of misfolded proteins in the ER and decreased normal protein synthesis 
and secretion,  including vATPase for lysosome, which then lead 
to decreased hydrogen concentration and elevated pH in lysosome. 
Dysfunctional lysosome lead to impaired function of autolysosome 
and overall autophagy function. On the other hand, the increased 
cytosolic Ca2+ activates calciuneurin which induces the synaptic loss 
and memory loss directly or via impaired autophagy. Dantrolene is a 
known antagonist of the RYR and inhibit excessive Ca2+ release from ER 
to cytosolic space and subsequent detrimental effects from abnormal 
elevation of cytosolic Ca2+ and depletion of ER Ca2+ in AD pathology.

Future Strategy for New Drug Development
Alzheimer’s disease has shown insidious onset and a progressive 

dementia. It is a multifactorial complex disorder of the brain. So the 
treatment is equally complex and is a huge challenge. From a clinical 

perspective, interventions that target treatment AD through early 
disease diagnosis, combination therapies, lifestyle changes, stem cell 
therapy and exercise interventions show promise for brain health 
[32,118-121]. Studies have shown that if the treatment is performed 
before the diagnosis, the outcome is better. So, the hope is, treatments 
in the future should be initiated in its earliest stages, such as when 
calcium dysregulation start which is earlier than amyloid pathology, 
before occurrence of irreversible brain damage or mental decline. 
Research on new strategies for earlier diagnosis seems to be among the 
most advanced areas in AD research. An effective approach of detecting 
early calcium dysregulation in AD brain will help the effectivity of early 
treatment by drugs targeting calcium dysregulation pathology. 

Several potential biomarkers are being studied for their ability to 
indicate early stages of Alzheimer’s disease. For examples, beta-amyloid 
and tau levels in cerebrospinal fluid and brain changes detectable by 
imaging. PET scan is one of these imaging technologies which utilize 
a radioactive tracer to look for pathological markers of the disease, 
and it has made it possible to isolate tau tangles in the brain. PET scan 
imaging is a relatively non-invasive detection method that may help 
with earlier diagnosis. Recent research shows that these markers may 
change at different stages of AD process [122,123].

Researchers are looking for new ways to treat Alzheimer’s. Current 
Alzheimer’s treatments temporarily help relieve the symptoms of 
memory loss and cognitive dysfunction with thinking and reasoning, 
but do not treat the underlying disease, and delay of its progression. 

Future AD treatments may include a combination of medications, 
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similar to the strategies of treatments for many cancers or HIV/AIDS. 
Dendritic spine defects clearly contribute to cognitive decline observed 
in AD. These defects are considered an early event in memory circuit’s 
destabilization and should be taken into account for future development 
of investigational drugs. Novel pharmacotherapies should not be limited 
to the postulates of the amyloid cascade hypothesis. Events occurring 
at the synapse may prove to be instrumental in understanding the 
underlying pathology of this devastating disease.
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