
Volume 6 • Issue 4 • 1000271
J Earth Sci Clim Change
ISSN:2157-7617 JESCC, an open access journal 

Open Access

Chaudhuri et al., J Earth Sci Clim Change 2015, 6:4 
DOI: 10.4172/2157-7617.1000271

Open Access

*Corresponding author:  Chaudhuri C, Department of Civil Engineering,
Indian Institute of Technology, Kanpur, Tel: +91 512 259 7755; E-mail:
chiranjibchaudhuri@gmail.com 

Received March 26, 2015; Accepted April 06, 2015; Published April 16, 2015

Citation: Chaudhuri C, Srivastava R, Tripathi SN, Misra A (2015) Climate 
Change Observed over the Indo-Gangetic Basin. J Earth Sci Clim Change 6: 271. 
doi:10.4172/2157-7617.1000271

Copyright: © 2015 Chaudhuri C, et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

Climate Change Observed over the Indo-Gangetic Basin
Chaudhuri C*, Srivastava R, Tripathi SN and Misra A
Department of Civil Engineering, Indian Institute of Technology, Kanpur, India

Keywords: Geographical variations; Bayesian framework; Global
teleconnections

Introduction
Indo-Gangetic Basin (IGB) is the principal source of food and 

livelihood security for billions of people of India as well as south Asia 
[1]. Studies analyzing the behavior of water resources under climate 
change indicate significant impact on the mean annual discharge, 
which is governed by the changes in the intensity and frequency of 
precipitation distributions [2,3]. Changes in reservoir storage due to 
modest change in natural inflow have the ability to potentially change 
the energy production, flood generation, and control measure [4]. 
Several studies in the recent past have analyzed the climate change 
over the IGB [5-8]. However, there is a lack of general agreement 
about the magnitude, and even direction, of trends in rainfall [5,6,9-
20] as well as temperature [5,7,8,10,13,21-24]. This lack of agreement
may be due to various factors, e.g. exact extent of study domain (for
spatial averaging), analysis method (parametric or non-parametric),
and source of the gridded data. Climate is a very complex and non-
linear system consisting of a wide spectrum of variabilities within its
physio-dynamical process. The simplest among them is the linear
trend. Considering the entire study domain as a single entity, we can
explore the mean variable trend over the region. However, when we
extract a single trend response (mean response) for a region we lose the 
information of the geographical variation of the trend. Furthermore,
given the complexity of the climate system, it may be possible that a
single response is not enough to explain the total trend variation.

In this study, we analyze the precipitation data from APHRODITE, 
Climatic Research Unit (CRU), Global Precipitation Climatology 
Project (GPCC), India Meteorological Department (IMD), 
Precipitation Reconstruction over Land (PREC/L) and University of 
Delaware (UDEL), and temperature data from APHRODITE, CRU 
and UDEL to show that the spatial trends are strongly heterogeneous 
among different datasets. We estimate a unified trend of seasonal mean 
precipitation and temperature from previously mentioned datasets by 
merging them into a Bayesian framework. The grid points are assumed 
to be statistically homogeneous to allow us to fit data from all the 
datasets and grid points into a single statistical framework. We expect 
that this will result in a more precise estimation of different parameters 
than the case where each grid point is treated separately. This Multi 
variable Bayesian Merging (MBaM) formulation is motivated from the 
work of Tebaldi et al. [25] and Tebaldi et al. [26]. A major assumption 

of this technique is the interpretation of a dataset as a sample of the 
underlying climate space. Empirical Orthogonal Function (EOF) 
analysis derives the linear combination of input spatio-temporal 
variables in such a way that it maximizes their variance within an 
orthogonality constraint. Hannachi [27] has proposed an alternative 
formulation of EOF, which maximizes the trend within the climatic 
variable, called Trend Principal Component Analysis (TPCA). In the 
present work, we extend this Trend EOF method in our formulation. 
Temperature and rainfall, due to their close correlation with other 
important variables and easy availability of observations, are treated as 
a proxy for climatic system. Any method which combines the climatic 
information from these variables to an equivalent climate change signal 
will be very useful for the climate change studies over a geographical 
region. We combine the time series produced by the Bayesian method 
into a Multi-variable Trend Principal Component Analysis (MTPCA) 
setup to derive the equivalent trend principal components. These 
MTPCs, if significant, can be taken as the equivalent climate change 
signal. We use the equivalent climate change signal from MTPCA as a 
tool to find the relative importance of different drivers in inducing the 
observed climate change.

The main problems faced by any study on the climate change are: 
1) finding the underlying trend from the inter contradictory datasets
when actual climate characteristics are unknown, 2) defining a climate
change metric based on which the magnitude of the change can be
quantified, and 3) finding a set of governing factors which drive the
climate change over that region. Our objective through this paper is
to address these issues in the IGB geographic perspective. As studies
addressing these basic problems are very scarce, we have developed a
novel framework to address the above mentioned issues. We propose
MBaM framework to combine various datasets to extract underlying
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climatic signal of any meteorological variable. We formulate MTPCA 
to quantify the climate change, and to extract an equivalent climate 
change signal from the various datasets mentioned earlier. Finally, 
with the help of the climate change signal and correlation analysis, we 
examine the importance of different global or anthropogenic drivers 
to the climate change over the IGB. Our novel methodology provides 
useful insight into the characteristics of the climate change over the 
IGB, and examines the possible drivers for the same.

Study Area, Datasets and Methodology
The IGB has an aerial coverage of 70, 00,000 km2 and supports a 

population of 1 billion [28]. Considering this huge population (1/7th 
of total global population) the possibility of climate change over this 
region has a huge socio-economic implication. Figure 1 shows the 
location and coverage of the IGB (green shaded). We delineate the 
weather pattern over the IGB into four seasons, viz., winter (Jan-Feb), 
pre-monsoon (March-May), monsoon (Jun-Sept) and post-monsoon 
(Oct-Dec). The prominent meteorological phenomenon during winter 
is fog and during pre-monsoon is dust storm [29]. Most of the rainfall 
over IGB is concentrated during monsoon period [30]. Assessment of 
the climatic state of a region requires long-term information about the 
prevailing climatic conditions over that region. To create a long-term 
environmental database, several efforts have been made which led to 
the generation of extensive databases [31-36]. The datasets used in 
this study are examples of observational databases e.g. APHRODITE 
[37,38], CRU [39], GPCC [40], PREC/L [41], UDEL [42] and IMD [43]. 
We use the 0.5◦×0.5◦resolution precipitation data from these datasets. 
However, temperature data are obtained from APHRODITE, CRU and 
UDEL because they are available from only these sources. From 1971 to 
2005 is chosen as the study period for trend analysis.  

We assume normal (N) distribution of the climate variable 
(precipitation or temperature) Xitl, as 

1
1~ N[a b t, ( ) ]itl i i iX −+ λ λ                                                                       (1) 

where the indices denote the grid points (i), time (t) and dataset (l). ai 

and bi signify the intercept and trend respectively specified at the grid 
point i. λi and λl are climatic precisions at individual grid point and 
dataset, respectively.

The assumption of normality of climatic variables, specifically 
for temperature, is somewhat restrictive. However, this assumption 
makes all the statistical features of climatic variable, viz. mean along 
with its trend and variances, readily identifiable. Also, this assumption 
of normality is also supported by the Kolmogorov-Smirnov test (in 
supplementary material). Equation 1 signifies that there is a linear trend 
for climatic variable for each grid point with intercept ai and slope bi.

The assumption that the overall precision can be factorized into 
two precision parameters, λi and λl, (though somewhat restrictive), 
simplifies the parameter estimation and enables us to estimate the 
individual precision parameters more precisely. This ultimately results 
in narrower posterior distributions. Moreover, it also provides a 
means of comparing the accuracy of different observational datasets. 
We use the Gibbs sampler to iteratively simulate the samples of the 
posterior distribution from the sequence of conditional distributions. 
We discarded the first 5000 samples in the Markov Chain Monte 
Carlo (MCMC) sampling as “burn in” and uniformly “sampled 
without replacement” 1000 samples from the latter 15,000 values after 
20,000 iterations. Detailed discussion of the model is presented in the 
supplementary part of this paper.

The atmospheric fields like precipitation and temperature are 
closely related and it may be prudent to address their trends together. 
We extend the method given by Hannachi [27] to use the inverse 
rank computed from multiple variables and get a trend Principal 
Component (PC) which maximizes the total monotonicity considering 
all the variables and grid points.
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matrix of climatic variables time t=1, · · · , nt at grid points i=1, · · · , 
ni for number of variables v=1, · · · , nv. MTPCA uses a new matrix 
Q=q1, q2,··· , qni×nv of time positions of the sorted data (the inverse-
ranks of the data). To correct the non-uniform data distribution on the 
geographic grid we weighted this inverse rank Q with the corresponding 
latitude.

Multi variable Trend Empirical Orthogonal Function is given by 
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of ones. If the Eigen vectors of the co-variance matrix are v, then the 
Trend principal components (PC time series) on the physical space are 

given by TPC=Zv, where [X]
(X)

X EZ −
=

σ
is the standard score of the data 

matrix.

The relative magnitude of the Eigen values represents the extent 
of monotonicity explained by the corresponding Eigen vectors, and 
the vector with highest Eigen value gives the maximum mono- tonic 
trend. If the distribution or Highest Posterior Density Confidence 
Interval (HPDCI) of an Eigen value does not overlap others at a 
certain credible level, then it implies that the Eigen value as well as 
the corresponding Eigen vector is significant at that credible level. 
We generated a set of samples (1000) from the posterior distribution 
of rainfall and temperature after omitting the precision factor of the 

 

Figure 1: Location and cover age of the IGB (green).
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of increasing trend (<0.01 mm day-1year-1), though not significant, at 
the middle Bengal, at the eastern part of the IGB. The magnitude of 
the trends is strongest in this season which is due to the fact that most 
of the rainfall over IGB is concentrated within monsoon season, thus 
the consistent drying is also the strongest. These reductions in rainfall 
received by the IGB during the monsoon period have great implication 
on the Agriculture and hydro-energy production as most of the rainfall 
over this region is received during the monsoon season. Post-monsoon 
(Figure 2d) season shows a de- creasing trend in the central IGB (∼-
0.02 mm day-1year-1), but at the south-eastern part there is a significant 
increasing trend (∼0.03 mm day-1year-1), and the northern portion does 
not show any significant trend. The sharp spatial change of increasing 
to decreasing trend indicates probable land-sea interaction in the south 
eastern part of IGB.

Figure 3 shows the spatial distribution of the trend of temperature 
for the different seasons. The significant increasing trend is quite 
consistent in all the seasons. During winter (Figure 3a), the south 
western and north eastern parts of the IGB show significant warming 
(0.02° ∼ 0.04°C year-1). The north western part of the IGB has a cold 
mode (∼ –0.01°C year-1), which de- spite its lesser statistical significance, 
indicates the possible effects of cold westerly during this season. During 
pre-monsoon (Figure 3b), apart from north eastern part of the IGB (∼ 
0.01°C year-1), the entire basin shows a consistent significant warming 
trend (0.02° ∼ 0.05°C year-1).

We speculate, orographic effects of Himalaya are affecting the 
trend-less grid points at the north. During monsoon season (Figure 
3c), the entire IGB shows consistent significant increasing trend (0.02° 
∼ 0.04°C year-1). Like winter, post-monsoon (Figure 3d) has a similar 
“dual modal” structure. Apart from a pocket at the north east of the 
IGB (∼ –0.01°C year-1) the entire IGB shows significant increasing 
trend (0.02° ∼ 0.04°C year-1). The north eastern points show decreasing 
but not significant trend. We speculate, the effect of cold western 
disturbance is inducing this cold pocket [46]. 

Figures 4a-4d shows the Eigen value spectrum and their credible 

dataset (λl), performed Eigen analysis for each of these sample streams, 
and generated a distribution of Eigen value spectrum. We consider the 
Eigen vectors corresponding to the significant Eigen values as climate 
change signal for the analysis period.

Correlation between the equivalent climate change signals to the 
time series equivalent of any climatic driver signifies the dependence of 
the climate change on that driver. We test the correlation along with the 
significance test using the 1000 samples of the climate change signal, 
describing the uncertainties of the climate change. The significance test 
is further discussed in the supplementary section of this paper.

Results
We estimate the mean trend of all the grid points and test the non-

zero trend alternate hypothesis using HPDCI at 90% credible level. The 
grid points where the test rejects the zero trend null hypotheses are 
shown in the Figures 2 and 3 by asterisk (*) marks.

Figure 2 shows the spatial distribution of the trend of precipitation 
for different seasons. Trends in winter (Figure 2a) show a prominent 
bi-modal structure. The south eastern part of the basin shows 
prominent decreasing trend (∼-0.02 mm day-1year-1), and the north 
western part shows prominent increasing trend (∼0.02 mm day-1 

year-1). Central IGB during winter is completely void of any trends. 
This trend-less characteristics of rainfall over central IGB, which 
during this season has more amount of rain (3 ∼ 4 mm day-1) than 
other part of IGB, indicates the stable behavior of climate during this 
season. This structure indicates the possible effects of orography [44] 
in the northern part and effect of the sea [45] in the south eastern 
part. Trend structure during pre-monsoon (Figure 2b) seasons is 
not coherent. Very few grid points in the southern part of IGB show 
significant trends (∼-0.01 mm day-1year-1). Most of the northern and 
central IGB are completely void of any trend during pre-monsoon sea-
son. The monsoon (Figure 2c) season shows a strong decreasing trend 
for almost all the grid points (-0.02 ∼ -0.1 mm day-1year-1). There are 
two spatial modes,: eastern and western, of these decreasing trends 
with a north-south discontinuity at the central IGB. There is a pocket 

Figure 2: Bayesian trend of mean precipitation (mmday-1 year-1) for (a) winter, 
(b) pre-monsoon, (c) monsoon and (d) post-monsoon seasons. Asterisks (∗) are 
points with 0.90 credible level trend (p<0.1).

Figure 3: Bayesian trend of mean temperature (◦Cyear-1) for (a) winter, (b) 
pre-monsoon, (c) monsoon and (d) post-monsoon seasons. Asterisks (∗) are 
points with 0.90 credible level trend (p<0.1).
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interval for different seasons. The circle denotes the mean for the 
distribution of Eigen value and the bar denotes the corresponding 
spread at 0.90 credible level (p<0.1). For winter (Figure 4a), the 1st 
Eigen value is not significantly different from the 2nd Eigen value. For 
pre-monsoon (Figure 4b), and monsoon (Figure 4c), the 1st Eigen value 
is significantly different from the 2nd Eigen value. For post-monsoon 
(Figure 4d), the Eigen values are non-overlapping at lower (∼85%) 
credible level. These indicate that the IGB does not show a climate 
change during winter but during pre-monsoon and monsoon, the 
climate change is significant. During post-monsoon some indication 
of the climate change is present but with lower confidence (p<0.15).

Figures 4e-4h show the trend principal components along with 
their uncertainty band, which represents the equivalent climate 
change signal, for different seasons. The solid line denotes the mean 

of the principal component distribution and the dashed lines denote 
its spread at 0.90 credible level (p<0.1). For winter (Figure 4e), the 
lower and upper ends of the signal show considerable amount of 
uncertainties, which in turn makes the trend in the climate change 
signal negligible. For pre-monsoon (Figure 4f), monsoon (Figure 4g), 
and post-monsoon (Figure 4h), the signal shows a sharp linear change 
which indicates that the climate change over the IGB during those 
seasons is statistically significant.

Teleconnections are well known markers for synoptic scale 
dependence on regional climatic systems [47]. Sea-surface temperature 
or sea level pressure from some region can dynamically alter the climate 
over another distant region [48]. Tele-connection in- dices are the 
time series representations of the teleconnections. In Table 1, we use 
the correlation between the teleconnection index and the equivalent 
climate change signal to measure the dependence of the climate change 
over the IGB on the synoptic scale drivers. The significant correlations 
are marked with bold font. The east-pacific north-pacific oscillation 
index during pre-monsoon season (R=0.51), nino 4 index during 
monsoon season (R=0.47), and western hemisphere warm pool index 
during monsoon (R=0.68) and post-monsoon seasons (R=0.58), are 
significantly correlated to the climate change signals. The tropical 
northern Atlantic index is significantly correlated (R=0.39 ∼ 0.64) 
to the climate change signals during all the seasons. Despite these 
significant correlations, considering the overall correlation values we 
find that the climate change signal has little or no dependence on most 
of the global teleconnection indices.

Recent studies have identified anthropogenic emissions as 
the major cause of the climatic trends [49], which may in turn also 
affect the ecosystem [50,51]. The globally averaged Green House 
Gases (GHGs) are an excellent representative time series for these 
anthropogenic GHG concentrations. In Table 2 we use the correlation 
between the concentration time series and the equivalent climate 
change signal to measure the dependence of the climate change of 
the IGB on the anthropogenic drivers. All the GHGs are observed to 
be significantly correlated to the climate change signal during all the 
seasons. The average strength of correlations are maximum for CO2 
(R=0.94∼0.99) and N2O (R=0.94∼0.99) indicating these two as the 
most prominent anthropogenic drivers of the climate change. During 
winter, when the significant climate change is absent, the correlation of 
these anthropogenic drivers is the weakest.

 

Figure 4: The figure shows eigen value spectrum (a-d) and Climate change 
signal (e-h) along with their uncertainties for winter (a and e), pre-monsoon (b 
and f), monsoon (c and g) and post-monsoon (d and h).

Teleconnection/Seasons Winter Pre-monsoon Monsoon Post-monsoon
East Pacific North Pacific Oscn 0.11 0.51 -0.30 -0.02
Nino 1+2 0.21 0.13 0.06 0.15
Nino 3 0.15 0.29 0.19 0.09
Nino 3.4 0.15 0.30 0.28 0.12
Nino 4 0.25 0.34 0.47 0.29
North Atlantic Oscillation 0.33 0.11 -0.21 -0.22
Pacific Decadal Oscillation 0.29 0.37 0.16 -0.04
Pacific North American Index 0.23 0.00 0.21 0.18
Southern Oscillation Index -0.11 -0.29 -0.19 -0.05
Tropical Northern Atlantic Index 0.39 0.42 0.64 0.64
Tropical Southern Atlantic Index 0.31 0.32 0.13 0.27
Western Hemisphere warm pool 0.12 0.35 0.68 0.58
Western Pacific Index 0.33 -0.10 -0.25 -0.14
Indian Ocean Dipole -0.09 -0.17 0.00 0.01

Table 1: Correlation between different tele-connection indices and the IGB climate change signals.
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Summary
We have analyzed the dataset from multiple sources to show that 

the spatial trend characteristics vary considerably among different 
datasets. To address this issue we propose a Bayesian framework to 
get unified trends considering all those datasets. A number of samples 
from the equivalent dataset, after removing the effect of the individual 
observation dataset, are prepared using the parameters derived from the 
Bayesian framework. The samples from this analysis are specified into a 
MTPCA framework to derive the equivalent climate change signal for 
the IGB during different seasons. We show that the climate over the IGB 
is significantly (>90% confidence level) changing during pre-monsoon 
and monsoon seasons. During post-monsoon, the change occurs with 
slightly lesser significance (∼ 85% confidence level). During winter 
season, the indication of any climate change is absent. The equivalent 
climate change signal is further used to analyze the importance of 
different climatic drivers in inducing the climate change over the 
IGB. We find the global teleconnection has negligible importance in 
inducing the climate change. The concentrations of GHGs have very 
strong correlation to the climate change signal indicating their prime 
importance as drivers of the climate change over the IGB. These results 
indicate that the teleconnection indices, which may be responsible for 
inter annual variabilities or hydrological extremes (e.g. drought), may 
not play a significant role in long-term climatic trend over the IGB. 
On the other hand, GHG, which may not be responsible for inter-
annual variabilities, can play an important part in the climate change 
process over the IGB. The novel methods formulated in this paper are 
not restricted to the analysis of climate over IGB, but can be used in 
analysis of climatic characteristics of any region. These methods will 
help us in understanding the climatic properties of any region and the 
processes which induce them.
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