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Commentary

Age-related hearing loss (AHL), also known as presbycusis, is one of
the most prevalent chronic degenerative conditions; it progresses with
age and affects tens of millions of the elderly worldwide. It is
characterized by a decline in auditory function, which is reflected by
higher hearing thresholds and poor frequency resolution [1], resulting
in the inability to understand words and making it difficult to
understand everyday language. The primary pathology of AHL
includes the loss of sensory hair cells and spiral ganglion neurons, and
strial atrophy [2], in addition to degeneration of the central auditory
pathways. AHL is caused by the interaction of multiple factors and
shows large variations in the onset and extent of hearing loss. These
multiple factors complicate the interpretation of basic and clinical
research in AHL [3]. Human epidemiological studies have identified
four risk factor categories for AHL, including cochlear aging
(individual age), environment (occupational and leisure noise
exposure, ototoxic medications, socioeconomic status), genetic
predisposition (sex, race, specific genetic loci/genes), and health
comorbidities (hypertension, diabetes, stroke, cigarette smoking) [4-6].
Genetic investigation has identified several putative gene associations,
including with genes related to antioxidant defense systems, such as
glutathione S-transferase and atherosclerosis.

It has been postulated that reactive oxygen species (ROS) play a
major role in the degeneration of cochlear cells during aging [7,8].
Oxidative stress in the cochlea may result in enhanced hypoxia owing
to a poor cochlear blood supply in atherosclerosis, which could be
accelerated by genetic and comorbid factors.

Mitochondria are believed to be a major source of ROS [9-11]. ROS
generated inside the mitochondria can damage nuclear DNA,
mitochondrial DNA (mtDNA), membranes, and proteins, and further,
accumulate such damage. In particular, the level of a 4977-bp deletion
in mtDNA, known as the “common ageing deletion”, increases with age
in human temporal bones [12-15]. Polg knockin mice, which were
created by introducing a two-base substitution, lost the ability to
proofread mtDNA defects and showed an early onset of AHL with
severe degeneration of spiral ganglion and cochlear nucleus neurons
[16,17]. These findings indicate that the accumulation of mtDNA
mutations during aging leads to mitochondrial dysfunction, an
associated impairment of energy metabolism, and degeneration of the
cochlea and central auditory pathway.

Multiple antioxidant enzymes scavenge ROS and control their
damaging effects, including superoxide dismutase, catalase, glutathione
S-transferase, and glutathione peroxidase. These antioxidant defense
systems may also be influenced by the genetic background including
race, and the level of some antioxidant enzymes have been shown to
decrease during aging. For example, Mice lacking SOD1 were shown to
have accelerated age-related cochlear hair cell loss, reduced thickness
of the stria vascularis, and severe degeneration of spiral ganglion

neurons [16,17]. These findings indicate that an age-related decline in
the cochlear antioxidant defence systems can lead to an age-related
increase in ROS and also play a pivotal role in the development of
AHL.

In fact, supplementation of the following antioxidants slows AHL in
mice and rats: vitamin E and C plus melatonin or lazaroid; lecithin; a
mixture of L-cysteine-glutathione mixed disulfide, ribose-cysteine,
NW-nitro-L-arginine methyl ester, vitamin B12, folate, and ascorbic
acid; α-lipoic acid and coenzyme Q10; and N-acetyl-L-cysteine
[8,18-20]. Further, compared to age-matched controls, C57BL/6 mice
that received caloric restriction (CR) retained normal hearing and
showed no obvious cochlear degeneration and a significant reduction
in the number of terminal deoxynucleotidyl transferase dUTP nick end
labeling-positive and cleaved caspase-3-positive cells among the spiral
ganglion cells. DNA microarray analysis revealed that CR
downregulated the expression of 24 apoptotic genes, including Bak and
Bim, suggesting that CR could prevent apoptosis of cochlear cells [21].
Oxidative stress from paraquat induced Bak expression and apoptosis
in primary cochlear cells, which was ameliorated in Bak-deficient cells
[8]. These results suggested that AHL was caused by oxidative stress-
induced Bak-dependent apoptosis. Furthermore, CR failed to reduce
oxidative DNA damage and prevent AHL in C57B/6 mice lacking
Sirt3, a mitochondrial deacetylase [22]. In response to CR, Sirt3 was
deacetylated and it in turn activated mitochondrial isocitrate
dehydrogenase 2, leading to increased NADPH levels and an increased
ratio of reduced-to-oxidized glutathione in the mitochondria. These
findings indicated that the beneficial effects of CR were mediated by
ROS-antioxidant systems and that Sirt3 is essential for upregulating
the cochlear mitochondrial glutathione antioxidant defence system
during CR.

Taken together, the putative AHL mechanism is that the cumulative
effects of oxidative stress result in the accumulation of mtDNA
mutations/deletions and the decline of mitochondrial function, and
that these progressively induce Bak-dependent apoptosis of cochlear
cells. AHL may be delayed or prevented by supplementary antioxidants
or CR. Large clinical trials are needed to verify if AHL can be delayed
or prevented in humans and to clarify the molecular mechanism of
AHL.
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