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Introduction
Trypanosomosis is a complex of diseases that affect man and his 

livestock in Africa, Asia, Central and South America. The African 
Animal Trypanosomosis (AAT) caused by Trypanosoma brucei, 
Trypanosoma evansi, Trypanosoma vivax, Trypanosoma congolense  
and Trypanosoma simiae is probably the more serious problem for 
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Abstract
In Venezuela Trypanosoma evansi is responsible for trypanosomosis that affects equines, canines, bovines 

and wild animals such as capybaras. The pathology of the infections by this monomorphic trypanosome has been 
extensively studied by different authors in experimental and field conditions at level of light and electron microscopy. 
The aim of this study is to provide additional evidences about the development of an intracellular stage during 
experimental infections of albino mice with a Venezuelan isolated from Apure state. Samples of different organs 
from mice experimentally infected with 104 trypanosomes were prepared for transmission and scanning electron 
microscopy. Results show the presence of T. evansi in the lumen of blood vessels and interacting with endothelial 
cells, Küpffer cells, macrophages, lymphocytes and neutrophils. A frequent finding was the detection of intracellular 
trypomastigotes in the cytoplasm of normal looking and necrotic cells of the adrenal cortex, liver, capillaries 
and spleen. Despite most of the intracellular trypomastigotes observed, presented the ultrastructural feature of 
trypomastigotes from subgenus Trypanozoon, only a very few number of trypanosomes showed an ultrastructure 
compatible with an epimastigote-like. Most of trypanosomes presented a normal ultrastructure, however ultrastructural 
patterns suggestive of apoptosis could also be evidenced. Results are discussed in the context of their impact in the 
diagnosis, treatment of the disease, evasion of immune system, immunosuppression as well as the persistence and 
prevalence of T. evansi in natural hosts. 
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the development of the region, because more than 44 million of 
cows are at risk of dying in the sub-Saharan Africa [1,2], a problem 
that worsens when more than 55 million people are considered to be 
at risk of contracting sleeping-sickness [3]. The losses associated to 
inefficient control of AAT were estimated in US$1340 million per year, 
without including indirect livestock benefits such as manure, traction 
and secondary products such as clothing and hides. In addition, losses 
in terms of meat and milk productivity alone have been calculated in 
US$700 million per year [1]. In South America the impact of domestic 
animals trypanosomosis caused by T. evansi has not been satisfactorily 
estimated and no financial estimates are available for countries such as 
Venezuela.

In Venezuela animal trypanosomosis is mainly caused by T. vivax 
and T. evansi. Regarding to T. evansi, it is well known that is the 
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etiological agent of equine trypanosomosis known as “Derrengadera” 
[4] with high seroprevalence rates especially in geographic locations 
where it is enzootic such as the Apure State (81.7%) [5]. The 
transmission of the infection is carried out by biting flies of Tabanidae 
family [6-8], affecting horses, donkeys, bovines [9,10] and wild animals 
as capybara (Hydrochoerus hidrochaeris) in which it causes a sub-
patent or asymptomatic infection [11]. Recently, human infections 
caused by T. evansi have been reported in India [12,13] and southern 
Vietnam [14]. Although these infections are associated with a lack of 
apolipoprotein L-I, the number of cases could be underestimated. For 
these reasons, the evaluation and improvement of new diagnostic tests 
and field researches are required for detection and confirmation of 
these atypical cases [15]. 

Infections caused by T. evansi in domestic animals can be acute with 
fever, emaciation, anemia and sudden death in some cases or chronic, 
with a progressive weakness, emaciation and a notable decrease in the 
productive capacity [16]. The pathology of T. evansi infections has 
been extensively studied by different authors in experimental and field 
conditions [17-23]. As a consequence of its location inside host body, T. 
evansi has been included together with T. brucei, T. brucei rhodesiense, 
T. brucei gambiense, T. equiperdum and T. cruzi, within a trypanosome-
group whose infection occurs in the blood plasma, but may also 
occur extravascularly and in certain body fluids (cerebrospinal fluid, 
peritoneal and synovial liquids and aqueous humor), triggering not 
only anemia, but also extensive inflammatory, necrotic and degenerative 
processes [24].

Our electron microscopic studies about the ultrastructural 
pathology of the murine infections with T. evansi were able to detect 
trypomastigotes in the blood vessels of all tissues studied in adrenal 
cortex [25], skeletal muscle [26], liver [27], spleen, kidneys and 
testes, as well as in the connective tissues of liver and adrenal gland. 
The extravascular presence of T. evansi should not constitute a new 
surprising fact, because the very first extravascular observation of 
trypanosomes from brucei-group (T. brucei, T. brucei rhodesiense, 
T. brucei gambiense, T. evansi and T. equiperdum), was made in 1912 
by Wolbach and Binger, who described that the infections with these 
trypanosomes cause severe damages in the perivascular connective 
tissue, characterized by disorganization and breaking of collagen 
bundles, as well as fibroblasts destruction [28].

Luckins et al. [19] recognize the presence of T. evansi in the 
connective tissues of the skin from rabbits experimentally infected and 
propose that the extravascular location of the trypanosomes at the site 
of inoculation should be responsible for the aggressive inflammatory 
response, with collagen destruction, edema and necrosis. In addition, 
they proposed that the extravascular growth of the trypanosome 
populations and the consequent increase in the number of variant 
antigen types (VAT´s), would allow the colonization of the bloodstream 
by T. evansi, as a consequence of the evasion of host immune system 
through the mechanism of antigenic variation. 

Similar observations were described by Uche and Jones [20] in 
the spleen, lymphatic nodes, vulva and ears of experimentally infected 
rabbits, and Biswas et al. [23] in the liver of Bandicoot rats. These 
results confirm that the presence of extravascular trypomastigotes in 
kidneys, heart, lungs, liver, and central nervous system (CNS), instead 
to constitute indicators of a protective immune response, constitute a 
destructive response capable to cause hosts death. The abundance of 
these extravascular forms of T. evansi during the experimental and 
natural infections besides being responsible for the higher mortality 
for deer (Cervus porcinus) [18,22], could be associated to the genetic 

predisposition of the host to the infection and the development of an 
inadequate immune response among other factors

As it has also been described for T. brucei, the extravascular 
presence of T. evansi could be a consequence of the ultrastructural 
damage observed in the capillary, arterioles and veins of the infected 
animals. Damage to the vasculature described for the infection of the 
adrenal glands [25], skeletal muscle [21,26,29] and liver [27] with the 
same Venezuelan isolate of T. evansi , were severe enough to allow the 
infiltration of blood cells, trypomastigotes but also biologically active 
molecules secreted by live T. evansi trypomastigotes [30] or from dead 
trypanosomes into tissues and extravascular spaces. 

The main contribution of this work is the confirmation that 
the occurrence of intracellular stages in experimental infections 
of albino mice with the Venezuelan isolated EcHF91 of T. evansi is 
more frequent than what was initially reported in the preliminary 
works of our group [25-27,29]. In this regard extensive observations 
of a greater number of ultrathin sections allowed us to verify that cell 
invasion is not only limited to cells of the adrenal cortex, hepatocytes 
and vascular endothelium, but also to cells of the immune system such 
as plasma cells and lymphocytes. In addition, the ultrastructural and 
morphological findings obtained by Transmission Electron Microscopy 
(TEM) and Scanning Electron Microscopy (SEM) provide suggestive 
evidence on the occurrence of an active invasion process as well as 
the confirmation that bloodstream and intracellular trypomastigotes 
share the same ultrastructural features. The results are discussed in the 
context of the impact of these stages on the diagnosis-treatment of T. 
evansi trypanosomosis, its evasion of immune system, the persistence 
of this hemoparasite in natural hosts as well as its seroprevalence and 
detection by the polymerase chain reaction technique (PCR) in clinical 
and parasitological healthy animals.

Material and Methods 
Trypanosoma evansi

The population of T. evansi used in this work was derived from 
a heterogeneous line originally isolated in 1991 from an infected 
horse (Equus caballus) at the Hato El Frío (7° 56’ North and 68° 57’ 
West) in the Apure State of Venezuela (Ec/1991/Faculty of Veterinary 
Sciences-UCV/Stock 3/IBE). This heterogeneous population (EcHF91) 
was classified as T. evansi according to the clinical manifestations, its 
morphology, parasitological behaviour and ultrastructural feature 
(low number of coated vesicles in the flagellar pocket in relation to 
T. equiperdum a co-endemic specie of trypanosome) [31]. It was 
maintained in the laboratory through passages in albino rats and 
cryopreservation at -196°C, using 1% glucose PBS pH 7.4 with 10% 
(v/v) dimethyl-sulphoxide as cryoprotector.

Experimental design and infections 

Two groups of 10 heterozygous male mice (NMRI-IVIC) with 
a body weight of 20-25 g were used for the electron microscopic and 
parasitological studies. They were kept in metal cages, using rice-shell 
as a bed in the animal facility of the Laboratory of Immunology and 
Chemotherapy (Instituto de Biología Experimental-UCV). They were 
fed on Ratarina® and ozonized water ad libitum, and experimentally 
infected by intraperitoneal (IP) inoculation with 0.1 ml of diluted rat 
infected blood containing 104 trypanosomes (400 trypanosomes/g of 
body weight). Parasitaemia of both groups was daily checked as described 
by Brener method [32] and 6 animals for electron microscopic studies 
were sacrificed on day 5 post-infection under Ketamine anesthesia (80-
120 mg/kg IP), when they were dying and parasitaemia reached levels 
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of approximately 109 trypanosomes/ml. A third group of healthy mice 
(n=4) were also sacrificed and used as controls.

The overall survival (OS) of groups was defined as the number 
of live mice present in the cages at each day. All the dying mice (in a 
convulsing and prostrated state with nose-bleeding) present in cages 
were euthanized under anesthesia as previously described in order to 
avoid their suffering.

Statement of animal rights

During experimental infection, all animals were maintained under 
veterinary supervision to safeguard health and minimize animal 
suffering. Protocols used were approved by the Ethical Committee for 
Laboratory Animal Use under number 013-11 according to the Ethics 
Chart of animal experimentation.

Electron Microscopy
Transmission electron microscopy

Pieces of adrenal glands, liver and spleen (2 mm3 each) were fixed with 
Karnovsky´s solution (2.5% glutaraldehyde, 4% p-formaldehyde in 0.1 M 
Millonig phosphate buffer pH 7.4) and 1% osmium tetroxide, dehydrated 
in increasing ethanol concentrations and embedded in LX-112 epoxy resin 
(Ladd Research Inc., Burlington) according to Rossi et al. [25]. Ultrathin 
sections were obtained with a diamond knife in a Porter-Blum MT2-B 
ultramicrotome, stained with uranyl acetate and lead citrate [33], and 
examined with Hitachi models H500 and H7100 transmission electron 
microscopes with an acceleration voltage of 75-100 kV.
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Figure 1: Parasitaemia and overall survival of mice experimentally infected 
with T. evansi. Parasitaemia calculations were performed with (n=20) mice 
from both experimental groups.  The black arrow (↓) indicates the time when 
the animals were sacrificed for the electron microscopic study. The bars 
represent the standard deviation of the parasitaemia mean  calculated at 
each point with (n=20) mice from day 1 to 4 post-infection, (n=6) mice on day 
5 and (n=2) mice on day 6 post-infection.

Figure 2: Normal ultrastructure of cells from adrenal glands of healthy mice. 
(A) Cortical cell from fasciculate layer characterized by their characteristic 
mitochondria with tubular cristae (white ▲). Notice the presence of lipid 
droplets (white*), tubular SER (white →) and some lysosome (White●). Bar: 
1.5 μm. (B) Cortical cells from reticularis layer showing the abundance of 
mitochondria with vesicular cristae (white ▲), lipid droplets (white*), SER 
(white →), some lysosome (white ●) and the union complexes (○) between 
two contiguous cells. (■) nucleus; (♦) nucleolus; (RBC) erythrocyte; (□) 
capillary lumen. Bar: 1.4 μm.

Scanning electron microscopy

Pieces of the aforementioned organs were fixed and freeze fractured. 
Briefly, tissue pieces were fixed with Karnovsky´s solution, cryoprotected 
by incubation with 25% (v/v) glycerol in 0.1 M Millonig phosphate buffer 
pH 7.4 for 45 minutes at ambient temperature and quickly frozen under 
super cooled isopropane (-196°C). Frozen samples were freeze-fractured 
with a steel knife in a JEOL 9010C freeze-fracture device (1 × 10-6 Pa, 
-120°C), dried by evaporation on a critical point dryer (Hitachi HCP-2) 
using carbon dioxide (CO2) as liquid transition fluid, mounted on a sample 
holder and shadowed with platinum ions (Electron Microscopy Science 
EMS-350) [34]. Microscopic observations were done with Hitachi model 
S800 scanning electron microscope with an acceleration voltage of 5 kV.

Results
The course of parasitaemia of mice experimentally infected with 

T. evansi is shown in Figure 1. The prepatent period was 2 days and 
maximal parasitaemia (1.26 × 109 Tryp/ml) was reached when the 
overall survival of both experimental groups was 10% (1 out of 10 mice).
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Figures 2-4 show the normal ultrastructure of the adrenal cortex 
cells, hepatocytes and spleen white pulp from the healthy mice used as 
controls respectively. As it can be seen in Figure 2, cortical cells from 
fasciculate layer showed the normal ultrastructure of steroid producing 
cells characterized by abundant mitochondria with tubular (Figure 
2A) or vesicular (Figure 2B) cristae, a well-developed tubular smooth 
endoplasmic reticulum (SER) and lipid droplets.

Transmission electron micrographs obtained from hepatocytes of 
healthy mice (Figure 3), showed the normal ultrastructural feature of cells 
with high metabolic function as judged by the abundance of mitochondria, 
rough endoplasmic reticulum (RER) and SER, lysosomes, glycogen 
particles and lipid stores (lipid droplets) (Figures 3A and 3B). Normal bile 
canaliculi between hepatocytes were also seen (Figure 3B).

White pulp from control mice (Figure 4) showed numerous 
lymphocytes (characterized by their high ratio nucleus/cytoplasm), 
in close contact between them and macrophages, while the spaces in 
red pulp (results not showed) contained lymphocytes, reticular cells, 
erythrocytes and platelets.

The presence of bloodstream trypomastigotes during the experimental 
infection of mice with T. evansi (EcHF91) was demonstrated in different 
host organs compartments. A frequent finding was the presence of 
bloodstream trypomastigotes in the lumen of the blood vessels of the 
adrenal cortex (Figure 5), as well as in the liver sinusoids (Figures 6A and 
6B) and splenic sinuses (Figures 7A and 7B). 

Bloodstream forms of T. evansi were also frequently observed 
interacting with the surface of Küpffer cells (Figure 6B), endothelial 
cells in the adrenal cortex (Figures 5 and 8), hepatic sinusoid walls 
(Figure 6B, 9A and 9B), or phagocytosed by endothelial cells (Figure 10A) 
or neutrophils (Figure 10B).

A peculiar and frequent finding was the observation of intracellular 
T. evansi trypomastigotes inside remains of cells of the adrenal cortex 
(Figure 11A) as well as inside cells showing cytoplasm of normal 
looking ultrastructure (Figure 11B). No intracellular trypomastigotes 
were observed in adrenal medulla (results not showed). In the liver, 
intracellular trypanosomes were detected inside the cytoplasm of 
normal (Figure 12) and necrotic hepatocytes (Figures 13 and 14).

The presence of intracellular trypomastigotes was not limited to 

Figure 3: Transmission electron micrographs of liver from healthy mice at 
different magnifications showing the normal ultrastructure of hepatocytes. 
In (A) it can be seen that hepatocytes are cells rich in mitochondria (white 
♦), lipid droplets (●) and glycogen particles (○). The presence of some 
microbodies (White*) is also seen. Bar: 1.2 μm. (B) Notice the presence of a 
bile canaliculus with its microvilli (▲) as well as the union complexes (→←) 
between two hepatocytes and the abundance of lysosomes (white*), RER 
(black →) and tubular SER (ꜜ). (■) hepatocyte nucleus. Bar: 2 μm.

Figure 4: White pulp of spleen from healthy mice showing the abundance of 
lymphocytes (L) in close contact with them and interacting with a macrophage 
(M). (White*) mitochondria; (▲) cells nuclei; (→) RER. Bar: 1.8 μm.

Figure 5: Transmission electron micrograph of a blood vessel from the adrenal 
cortex (Bar: 0.5 μm) of mice experimentally infected with T. evansi. Notice 
the presence of a bloodstream trypomastigote (T) with their characteristic 
flagellum (F), mithocondrion and kinetoplast (*), close to endothelial cell (■) 
cytoplasm extensions (→ ←) and interacting with cell through flagellum. In 
the adrenal cortical cells lipid droplets (♦) and mitochondria (▲) can be seen.
(○) Mitochondria in endothelial cell can be also seen.
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Figure 7: Spleen of mice experimentally infected with T. evansi, showing (A) 
a trypomastigote close to red blood cells (RBC) and a reticulocyte (■) in the 
red pulp (Bar: 1.2 μm) and (B) in the white pulp surrounded by white blood 
cells (WBC) (Bar: 0.5 μm). (T) bloodstream trypomastigotes; (F) flagellum; 
(→) glycosomes; (♦) mitochondrion; (White*) nucleolus.

Figure 8: Transmission electron micrograph of the interaction of a T. evansi 
bloodstream trypomastigote (T) with the endothelial cell (▲) of a blood vessel 
in the adrenal cortex of experimentally infected mice. The close association 
between the cell body of trypanosome and the endothelial wall is shown 
(→). (■) cell of the adrenal cortex; (white*) lysosomes; (¤)  trypanosome 
nucleolus. Bar: 1.5 μm. 

the adrenal cortex and liver parenchyma; they have been also detected 
less frequently inside plasma cells (Figure 15), endothelial cells of blood 
vessels from adrenal cortex (Figure 10A) and interacting with large 
activated spleen lymphocytes.

These intracellular stages of T. evansi showed to have the same 
ultrastructural feature of bloodstream trypomastigotes, with the 
exception of some forms observed in liver (Figure 14). These forms 
showed an ultrastructure that resembles the epimastigote stage of 
African trypanosomes, as judged for the position of the kinetoplast 
in relation with the anterior body end. Additionally, intracellular 

Figure 9: Scanning electron micrography of a liver freeze-fracture 
preparation showing (A) the interaction of bloodstream trypomastigotes 
of T. evansi (white→) with a sinusoid wall (white↔) through its posterior 
end and (B) suggesting the penetration of the sinusoidal wall by a T. 
evansi trypomastigote through its anterior end (white→←). The electron 
micrographs also show the microvilli of hepatocytes extended into the 
Disse’s space (white▲), the presence of fenestrations (white*) and the 
discontinuity of the sinusoid walls. Notice the undulating membrane of the T. 
evansi trypomastigote in (B). (♦) red blood cells. Bar: 5 μm

trypanosomes described were not inside a parasitophorous vacuole, 
appearing freely in the cytoplasm surrounded by lipid droplets, 
mitochondria, glycogen particles and RER (Figures 11A, 11B, 12-14, 
15A). 

Although in most of the electron micrographs herein presented 
(Figures 5, 6A, 6B, 7A, 7B, 8, 13 and 14), the ultrastructure of the T. 
evansi trypomastigotes was normal, as judged by comparisons with 
findings reported by Hernández-Páez [35], the ultrastructure of 
trypomastigotes in some electron micrographs (Figure 10A, 11A, 11B 
and 15), resembles the ultrastructural feature of T. brucei cell-death, 
characterized by apoptotic ultrastructural features such as swollen 
mitochondrion (Figures 10A, 15A and 15B), an apparent increase 
in glycosome electron density (Figures 11A and 11B), an apparent 
decrease on cytoplasm electron density (loss of cytoplasmic material) 
(Figure 15A), and alteration of nuclear chromatin (Figure 15B).

As it will be discussed in the next section, a working hypothesis 

Figure 10: Phagocytosis of T. evansi bloodstream trypomastigotes (T) by 
(A) an endothelial cell (■) from a capillary (Bar: 0.7 μm) and (B) a neutrophil 
(▲) inside the blood vessels of the adrenal cortex (Bar: 1.0 μm). In (A) 
notice the fenestrae (↓) and cytoplasm of endothelial cell (*), trypanosome 
mitochondrion (→); the basement membrane of capillary (ꜜ) and microvilli 
(black ♦) of cortical cell (●). (○) lysosomes; (RBCs) red blood cells; (white ♦) 
nuclear lobes; (→) neutrophil granules. 

Figure 6: Bloodstream trypomastigotes of T. evansi (■) in a liver sinusoid (A) 
showing the endothelial wall (→) and (B) showing the interaction of a flagellate 
with a sinusoidal lining Küppfer cell (◊) forming the sinusoidal wall. Notice the 
prominent nucleolus of T. evansi (¤). (↔) acidocalcisomes (previously known 
as polyphosphate vacuoles); (●) hepatocyte mitochondria; (♦) lipid droplets; (*) 
Disse’s space; (F) flagellum; (RBC) Red Blood Cell. Bar: 1.2 μm.
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endoplasmic reticulum (SER) (white ◊). Notice the (F) flagellum; (¤) cortical cell nucleus; (�)  

T. evansi mithochondrion; (� ) glycosomes. Bar: 1.2 μm.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11B: Intracellular trypomastigote of T. evansi (◄) in the cytoplasm 
of a normal looking cortical cell, surrounded by abundant mitochondria 
(white*) and dilated cisternae of smooth endoplasmic reticulum (SER) 
(white ◊). Notice the (F) flagellum; (¤) cortical cell nucleus; (●) T. evansi 
mithochondrion; (→) glycosomes. Bar: 1.2 μm.

Figure 12: Oblique sections of T. evansi body (T) and flagella (F) inside 
the cytoplasm of hepatocytes (Bar: 0.8 μm). Notice the normal ultrastructure 
of hepatocytes characterized by nucleus (▲), lipid droplets (●), vacuolated 
mitochondria (■), RER (→), glycogen granules (○), lysosomes (white ♦), 
peroxisomes (white *). 

Figure 14: Intracellular form of T. evansi (T) inside the cytoplasm of a 
necrotic hepatocyte surrounded by lipid droplets (black *) and glycogen 
granules (○) near the Disse’s space where microvilli of hepatocytes (white 
→) can be observed. Notice that ultrastructure of the intracellular form of T. 
evansi resembles an epimastigote stage. (◊) Kinetoplast; (white*) compacted 
kDNA microfibrils; (●) mitochondrion; (white ♦) Golgi complex and vesicles; 
(black →) trypanosome surface coat. Bar: 1.0 μm. 

Figure 11A: Intracellular form of T. evansi (◄) inside remains of a cell of the 
adrenal cortex (■) surrounded by mitochondria (white*). Notice that adrenal 
cortex cell is interacting with a necrotic white blood cell (♦) judging by the 
loss of plasma membrane integrity (white ↓). (●) trypanosome mitochondrion; 
(white F) flagellum; (white ♦) glycosome; (white →) oblique sections of 
subpelicullar microtubules. Bar: 0.8 μm. 

Figure 13: Intracellular trypomastigotes of T. evansi (T) inside the 
cytoplasm of a necrotic hepatocyte (■) below the Disse’s space (↔). Notice 
the abundance of oblique sections of T. evansi flagella in the hepatocyte 
cytoplasm, the normal ultrastructure of the trypomastigote and its proximity 
to lipid droplets (*), mitochondria (¤), and glycogen granules (○) from 
hepatocyte. (◊) sinusoid lumen; (white →) glycosomes; (●) mitochondrion; 
(white ▲) RER; (black ♦) acidocalcisomes; (white ♦) Golgi apparatus; (white 
*) nuclear envelope; (white ■ ) trypanosome nucleus. 

Figure 15: Intracellular trypomastigotes of T. evansi (T) inside the 
cytoplasm of (A) a plasma cell (▲) (Bar: 0.5 μm) and (B) interacting with 
a large activated lymphocyte (■) (Bar: 0.7 μm) of spleen white pulp from 
experimentally infected mice. Notice the ultrastructural feature of the plasma 
cell showing the nucleus (white ▲) with the typical cartwheel configuration as 
well as the cytoplasm with abundant dilated cisternae of RER (*) surrounding 
trypanosome body and flagellum (white F). (F) trypanosome flagellum; 
(→) trypanosome mitochondrion; (♦) trypanosome nucleus; (¤) plasma cell 
mitochondria. 
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about a feasible mechanism for the internalization of T. evansi in these 
tissues is proposed based on the results herein presented, as well as 
results previously published by our group [25-27,29,30] and from other 
authors working with T. evansi and other trypanosome species (Figure 
16).

Discussion
The occurrence of intracellular stages of T. evansi is something 

relatively new. Only a letter to the editor, previous to our works describes 
the presence of amastigote and spheromastigote stages in the brain of 
a cat infected with T. evansi [36]. This communication contrasts with 
findings reported to the date about morphology of trypanosomes of 
subgenus Trypanozoon (Salivary Section). It is important to highlight 
that with the exception of the epimastigote-like stage that was herein 
presented; all of the intracellular trypanosomes detected in our work 
were trypomastigotes. Moreover, in all of studied samples we have not 

observed the presence of trypomastigotes in different stages of rolling 
as it has been described by Ormerod and Venkatesan [37] for T. brucei. 
In addition trypomastigotes were observed freely in the cytoplasm and 
not enclosed in a parasitophorus vacuole, as it has been described for 
Leishmania spp and the initial stages of infection of cardiomyocytes 
with T. cruzi [38]. 

This observation previously reported for T. brucei in the CNS of 
infected rats and mice [39-42], was described for the very first time for 
T. evansi by our group [25] as a casual finding during studies about the 
ultrastructural pathology in murine infected with this trypanosome. 
From the year 1999 to the date, we have accumulated more substantial 
ultrastructural evidences about the occurrence of this phenomenon in 
the experimental infections of albino mice with EcHF91 isolate.

Studies performed by our group (manuscript in preparation) with 
other Venezuelan isolates of T. evansi, such as the isolated HhHF92 
from a Venezuelan capybara (Hydrochoerus hydrochaeris) captured in 
1992 at the same locality of the EcHF91 isolated, and EcM96 isolated 
from an infected horse at Mantecal (Apure state) in 1996, not only 
have demonstrated differences in the parasitological behavior, but 
also the inability to develop this intracellular stages in albino mice 
experimentally infected, results that were in agreement with studies 
performed with different isolates of T. evansi [43-45], in which it was 
impossible to detect the presence of intracellular trypanosomes.

Although we have found trypomastigotes of T. evansi inside 
necrotic spaces lacking of plasma membrane limits, we have also 
detected intracellular trypomastigotes inside spaces with membrane 
limits that show a normal looking ultrastructure in adrenal cortex 
cells, hepatocytes, endothelial cells and plasma cells. In these spaces 
trypanosomes observed, show the typical ultrastructural features of 
trypanosomes belonging to the subgenus Trypanozoon as it has been 
described for a Venezuelan isolate of T. evansi [35] and for African 
trypanosomes belonging to brucei-group [46]. In all of the cases 
trypanosomes were surrounded by mitochondria, lipid droplets, 
glycogen granules and RER with normal ultrastructure.

The appearance of intracellular trypomastigotes in the cytoplasm of 
these cells should be a consequence of mechanisms responsible for the 
increased vascular permeability, as well as necrotic process and large 
gaps seen in the endothelial walls [25,27], together with the presence 
of receptors to T. evansi surface ligands in the affected host cells. The 
mechanism through which T. evansi infects or penetrates these cells is 
unknown, however this event would be explainable if an active invading 
process mediated by parasite’s biologically active molecules as well as 
ligands and receptors in host cells, are present. 

As it can be seen in Figure 16, a working hypothesis about a 
feasible mechanism for the internalization of T. evansi in these tissues is 
proposed according to the results herein presented, and other published 
by our group [25-27,29-30], as well as from other authors working with 
T. evansi and other trypanosome species. It is important to clarify that 
the working hypothesis never intends to assert that intracellular forms 
described in this paper occur as described in the figure. This hypothesis 
should be tested through experimentation. 

According to Figure 16A, in the first step, the secretion or releasing of 
different trypanosome enzymes (proteases, peptidases, phospholipases, 
etc.) to the bloodstream during the infection, could act in a synergistic 
way causing damages of the sinusoid walls, vascular endothelium, 
blood cells and tissues as it has been described for T. brucei [47] and 
T. vivax [48]. In addition a 29 kDa T. evansi cysteine-proteinase with 
gelatinolytic activity, secreted extracellulary [30] and detected as a 

 
Figure 16: Working hypothesis about a feasible mechanism for the invasion 
of host cells in the experimental infections of mice T. evansi EcHF91, upon 
the basis of results herein presented as well as other findings of our group 
and researchers working with T. evansi and other trypanosome species 
Rossi et al. [25]; Finol et al. [26]; Rossi et al. [27]; Finol and Roschman [29]. 
de Souza et al. [38]; Anosa and Kaneko [47]; Esievo and Saror [48]; Giardina 
et al. [49]; Knowles et al. [50]; Tizard et al. [51]; Poltera [52]; Igbokwe [53]; 
Banks [55]; Jenkins [56]; Ming et al. [57]; Moody et al. [58]; Vray et al. [59]; 
Kleshchenko et al. [60]; Frazier and Glaser [61]; Turner and Donelson. [62]; 
Shehu et al. [63]; Rossi et al. [64]; Zhao et al. [65]; Grab et al. [66]; Nikolskaia 
et al. [67]; Nikolskaia et al. [68]; Scharfstein et al. [69]; Samad et al. [70]; Nok 
et al. [71]. (↑) increase; (↓) decrease.
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somatic antigen in trypomastigotes of T. evansi and T. equiperdum [49], 
could act by removing sialic acid residues in the form of glycopeptides 
[50], which along with trypanosomal phospholipases can induce 
vasculitis and an increase of the vascular permeability [51-53]. 

On the other hands, the high levels reached by these antigens from 
trypanosomes in bloodstream and its reactions with specific antibodies 
and complement, could be responsible for the formation of immune 
complexes [54] to produce tissue damages and inflammation due the 
release of kallikrein that together with phospholipases, are capable to 
activate kininogen to produce bradykinin and kallidin, which in turn 
increases vascular permeability by combining with acidic groups from 
mucopolysaccharides and endothelial glycoproteins [53]. 

The interaction of T. evansi with the endothelial cells in addition 
to the necrotic process, the large gaps seen in the capillary walls 
[25,26] and liver sinusoids [27], and the mechanic effects associated 
to the motility of trypanosomes [55,56], could explain the presence of 
trypanosomes and blood cells in the Disse`s and sub-endothelial spaces 
of liver and adrenal cortex, but also the interaction of trypanosomes 
with the parenchymatous cells of these tissues (Figure 16B). In the 
hypothetic process proposed, the interaction-invasion of host cells by 
T. evansi can be divided into three stages: adhesion and recognition, 
signaling, and invasion. As it has been described for T. cruzi entry 
process, many molecules that are present in the membrane of the 
host cells such as lectins and bradykinin receptors, could be potential 
partners for recognition depending on the cell type involved [38]. 

Lectins present in mammalian cells are represented by sugar-
binding proteins, which are highly specific for their sugar moieties and 
are involved in attachment between pathogens and host cells [57-60]. In 
a second step, presence of lectins on the plasma membrane of these cells, 
as it has been described for hepatocytes and Küpffer cells [61] could 
help the adhesion of T. evansi to endothelial cells, cells of the adrenal 
cortex, plasma cells and lymphocytes. These evidences are supported by 
findings about the binding of murine hepatocytes to acrylamide sheets 
containing D-galactose, one of the most abundant monosaccharides 
on the Variable Surface Glycoprotein of the surface coat of African 
trypanosomes [62]. On the other hand, secretion of sialidases whose 
levels are marked increased in plasma of bucks experimentally infected 
with African isolates of T. evansi [63], could produce cleavage of surface 
sialic acids from host cells, exposing β-galactosyl residues which in 
turn could be breakdown by β-galactosidase or been recognized by 
β- D-galactose specific lectins on the surface of adrenal cortex cells, 
hepatocytes, white blood cells, macrophages and Küpffer cells from 
hepatic sinusoids, leading to the adhesion of T. evansi to host cells 
and the abnormal extravascular erythrophagocytosis observed during 
experimental infections of mice [64].

This first interaction could be stabilized by the specific recognition 
of a 120 kDa T. evansi protein, through cell surface receptors as it has 
described for peritoneal macrophages, lymphocytes and epithelial 
cells from mice kidney (Zhao et al., unpublished data), and  presented at 
the First International Seminar on Non Tsetse-Transmitted Animal 
Trypanosomosis in Annecy (France) in October 14-16, 1992 [65]. 

During adhesion-recognition process, these interactions parasite-
host cells could also represent external signals which are transduced 
intracellularly determining a cell signaling event with the consequent 
increase on intracellular calcium ions level (Ca2+) (Figure 16C) as it has 
been described for T. cruzi.

The intracellular calcium levels may also remain high by the effect 
of the 29 kDa cysteine-protease secreted by T. evansi [30]. This protease 

could stimulate an influx of Ca2+ that determine the invasion of the 
cells, in a similar way described for the brucipain, a 30 kDa cysteine-
protease released during the infection of the CNS cells and endothelial 
cells with T. brucei gambiense [66-68].

The bradykinin receptors are another class of receptors that T. evansi 
could use to penetrate host cells, as it has been described for the invasion 
of Chinese hamster ovary (CHO) cells by T. cruzi trypomastigotes. These 
receptors are coupled to the heterotrimeric protein G and are formed 
by two subtypes: the bradykinin-2 receptor, which is constitutively, 
expressed by cardiovascular cells and the bradykinin-1 receptor whose 
expression is up-regulated in injured tissues [69].

The invasion of host cells by T. evansi could be achieved by the 
actin dependent pathway (Figure 16D). According to this pathway, 
trypomastigotes penetrate into a host cell through plasma membrane 
expansions and invaginations that accumulates phosphoinositol 
triphosphate (PIP3), a phosphoinositide which is produced by class I 
PI3 Kinase, as a consequence of the increase in the intracellular levels of 
Ca2+ [38]. This event culminates with the assembly of a parasitophorous 
vacuole formed from the plasma membrane containing internalized T. 
evansi trypomastigotes (Figure 16E). Subsequently, trypomastigotes 
could produce the lysis of the parasitophorous vacuole membrane 
(Figure 16E) through the releasing of phospholipases [70], and/or the 
action of a membrane-bound neuraminidase that was isolated from 
bloodstream trypomastigotes of T. evansi [71]. 

The enzymatic breakdown of the parasitophorus vacuole, could 
lead to the presence of free T. evansi trypomastigotes in the cytoplasm 
of cells exhibiting different degrees of ultrastructural alterations, as it 
has been described in previous works (Figure 16F) [25-27,29].

The intracellular stages of T. evansi could be one of the many 
biological characters shared by particular genotypes of trypanosomes 
belonging brucei-group [31,72] and capable to develop cryptic stages 
[37,39,41], as it has been described for their ultrastructure, their 
mammalian hosts, way of transmission, pathogenicity, biochemical 
[49] and molecular characteristics.

From the biological and pathological point of view, these 
intracellular trypomastigotes could be implicated as a source of 
relapse after chemotherapy [40,72] and must contribute seriously 
to the pathogenesis of the infection by producing direct and 
indirect ultrastructural alterations of liver, adrenal cortex, vascular 
endothelium, red blood cells [25-27,64], as well as immunosuppression 
as a consequence of its tropism for lymphocytes and plasma cells. 
These are important facts to be considered by research groups that are 
working on the development of new drugs against T. evansi, especially 
if drugs cannot cross the plasma membrane of the infected host cells.

In addition, intracellular trypomastigotes could be responsible 
for the recolonization of the vascular bed once the first VAT’s was 
destroyed by specific antibodies, as it has been proposed by Seed et al. 
[73] for antigenic variation during experimental infections of Microtus 
montanus with T. brucei gambiense (Wellcome TS strain). 

As it has been described for T. brucei, the occurrence of intracellular 
stages of T. evansi EcHF91 in the murine models could be explained as 
a capability or peculiarity of this genotype of T. evansi, because these 
intracellular stages it has not been described yet in other Venezuelan 
isolates of T. evansi studied such as EcM96, HhHF92 and TEVA1. 

On the other hand, because the invasion process could be 
determined by the size of the developing trypanosome population 
and the induction of the overexpression of receptors for parasite 
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surface macromolecules, as it has been described for the Low Density 
Lipoprotein receptor (LDLr) overexpression in cardiac cells of mice 
experimentally infected with T. cruzi [74], more assays should be 
performed in order to determine if the invasion process constitute an 
parasitaemia-associated event during the experimental infection with 
the isolated EcHF91.

Regarding to programed cell death in pathogenic trypanosomatids, 
it has been described for T. cruzi [75], L. amazonensis [76] and T. brucei 
[77,78], showing ultrastructural and biochemical profiles similar to 
those described in apoptotic processes [79]. 

In the intracellular trypomastigote stages of T. evansi described in 
this work, the ultrastructural apoptotic features detected were similar to 
those described by Barth et al [78] in T. brucei staurosporine-induced 
cell death such as significant increase in glycosomes, acidocalcisomes 
and lysosomes number and electron density, increase in flagellar pocket 
size and volume, appearing of vesicles and constrictions inside the 
flagellar pocket among other.

Because pathogenic trypanosomatids are able to induce apoptotic 
responses in the populations of parasitized host cells, but also in their 
own populations during the course of infection [79,80], apoptosis must 
surely be playing an important role in the host-parasite relationship. 
In this sense, parasitic apoptosis seems to be involved in the evasion of 
host’s inflammatory response (inhibiting or promoting their survival), 
as well as in the auto regulation of the uncontrolled growth of parasitic 
population, to avoid the early death of host and thus contribute to 
maximize their own dispersion and survival [79,81].

The occurrence of these intracellular stages in susceptible hosts 
under natural or field conditions could have important consequences 
at epidemiological level. In this regard, they could be responsible for 
cryptic parasitaemia described during infections of bovines [9], but also 
of the high levels of prevalence (30-50%) that could only be revealed by 
PCR in areas where the T. evansi infection is enzootic [10]. 

More research is needed not only to demonstrate the occurrence 
of these stages in horses, cattle, bubaline and capybara under field 
conditions, but also to know the mechanisms through which T. evansi 
invades host cells, as well as to assess the correlation of its presence with 
the high levels of prevalence in enzootic areas
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