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Introduction
Cancer remain is a global concern and great challenge to medical 

management. It has emerged as the second leading cause of death 
globally after cardiovascular diseases. The International Agency for 
Research on Cancer (IARC) recently estimated that 8.2 million deaths 
worldwide were due to cancer with 14.1 million new cases per year 
being reported worldwide [1]. In India, deaths from the disease have 
increased by 60% according to the ‘Global Burden of Cancer-2013’ 
report [2]. Among them non-Hodgkin lymphoma is the tenth most 

common type of cancer in the world. Approximately 71,850 new cases 
and 19,790 deaths were reported due to non-Hodgkin lymphoma in 
2015 (Surveillance, Epidemiology and End Results Program 2015). 

It is a type of blood cancer that occurs when lymphocytes begin 
behaving abnormally. Lymphocytes are white blood cells that protect 
the body from infection and disease. Abnormal lymphocytes may 
divide faster than normal cells or they may live longer than they are 
supposed to. Lymphoma may develop in many parts of the body such 
as the lymph nodes, spleen, bone marrow, blood or other organs of the 
human body. 

There are two main types of lymphomas:

• Hodgkin lymphoma (HL): There are 6 types of HL an uncommon 
form of lymphoma that involves the Reed-Sternberg cells.

• Non-Hodgkin lymphoma (NHL): There are more than 61 types
of NHL some of which are more common than others. In other
words any lymphoma that does not involve Reed-Sternberg cells
is classified as non-Hodgkin lymphoma.

Classification of non-Hodgkin lymphoma (NHL) can be quite 
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Abstract
Rituximab has been revolutionized and validated CD20 targeting monoclonal antibody. Although, it is widely 

used for lymphoma therapy and many patients have been benefited. However significant numbers of patients are 
refractory or developed resistance to current therapies due to low level of CD20 expression and/or availability on 
cells surface. Thus development of novel anti-CD20 mAbs with great cell killing ability and enhance CD20 levels on 
cell surface can potentially exploit lymphoma therapy. In this scenario, we are summarizing the recently developed 
mAbs against CD20 and compounds that have ability to induce CD20 expression at significant level. We also are 
providing information regarding combination strategy for use of radiation and anti-CD20 mAbs in vitro. However, 
it will need to be determined by rigorous at pre-clinical and clinic testing. We hope this review will be beneficial for 
current research in the area of immunotherapy or radio-immunotherapy. 
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confusing (even for doctors) because there are so many types and several 
different organs are involved. The most recent WHO classification is 
based on microscopic observations, the chromosome features of the 
lymphoma cells and the presence of certain proteins on the surface of 
the cells 

o	B-cell lymphomas: B-cell lymphomas make up most (about 
85%) of non-Hodgkin lymphomas in the United States (http://
www.cancer.org/cancer/non-hodgkinlymphoma).

o	T-cell lymphomas: T-cell lymphomas make up less than 15% of 
non-Hodgkin lymphomas in the United States. There are many 
types of T-cell lymphoma but they are all fairly rare (http://
www.cancer.org/cancer/non-hodgkinlymphoma).

Doctors put non-Hodgkin lymphomas into two groups depending 
on how quickly they are likely to grow and spread (Table 1).

• Low grade (indolent): These tend to grow very slowly

• High grade (aggressive): These tend to grow more quickly

Currently different treatment modalities are used for treatment 
of cancer for instance surgery, radiation therapy, chemotherapy, and 
immunotherapy (targeted immunotherapy). Traditionally radiation 
therapy (RT) plays an important role in the management of NHL. RT 
alone may be used as curative treatment for stages I and II in patients with 
indolent NHL. For the more extensive and aggressive conditions RT is 
used in combination with chemotherapeutic substances. While indolent 
and aggressive NHLs are responsive to RT and chemotherapy 50%-
70% of patients are relapsed [3,4]. Most side effects are associated with 
conventional therapies due to the non-specific nature of the treatments. 
Thus, there is a constant need for development of novel therapeutic 
strategies or approaches that may improve the outcome of NHL 
patients. Therefore, targeted immunotherapy is right option to improve 
clinical responses with decreasing toxicity. Targeted immunotherapy in 
cancer involves the administration of a substances which specifically 
interact with a molecules which may be directly or indirectly involved in 

oncogenesis [5]. These are tumor associated antigens which expressed 
on the cell surface, soluble factors, extracellular matrix proteins and 
proteins associated with vascularization of tumors. The expression of 
these antigens should ideally be limited to only cancerous cells to decrease 
any side effects which may results from targeting of normal cells.

Immunotherapy/ Radio-immunotherapy
The concept of targeted immunotherapy was known almost a 

century before. Paul Ehrlich (1854-1915) the founder of immunology 
discovered a ‘magic bullet’ on the surface of an infected cell which 
able to selectively deliver a toxin to the bacterium inside the cell while 
sparing other tissues. This led to a discovery of therapy for syphilis 
in the pre-penicillin era for which Ehrlich received a Nobel Prize in 
1908 [6]. The concept of the ‘magic bullet’ was successfully exploited by 
Milstein and Kohler in 1975 [7]. He successfully produced monoclonal 
antibodies using hybridoma technology and got Novel Prize for their 
intense scientific work. After two decades the concept of a ‘therapeutic 
magic bullet’ for cancer therapy was exist in 1997 with the approval 
of rituximab (anti-CD20 chimeric monoclonal antibody) by the US 
FDA for relapsed and refractory indolent lymphoma [8]. This was the 
first achievement of immunotherapy to kill B-lymphocytes by the use 
of anti-CD20 monoclonal antibody against the B-cell specific human 
CD20 cells surface molecules. The parallel successes of rituximab two 
other CD20 mAbs (Zevalin and Bexxar) were conjugated with radio-
active materials to boost their therapeutic responses. Ibritumomab 
tiuxetan (Zevalin) is a CD20 mAb coupled with the radioactive 
isotope yttrium-90 or indium-111. Tositumumab (Bexxar) labeled 
with iodine-131. Both antibodies were approved by US FDA in 2002 
and 2003 respectively. These are widely used for the treatment of 
follicular lymphoma (FL) patients and other NHLs as a part of radio-
immunotherapy [9,10]. After that various mAbs have been raised 
against CD20 some of them have been approved for human use (Figure 1).

The clinical success of CD20-targeted immunotherapy is limited 
expression of CD20 molecules. It is specifically expressed on tumor cells; 

Low grade NHL

S.No. Types of NHL Description
1. Follicular lymphoma It is the most common type (25%) of B-cell low grade lymphoma in the UK. About 1 out of 5 lymphomas in the United States 

is follicular lymphoma. It mainly occurs in adults at site of lymph node and bone marrow over the age of 50. Over time about 
1 in 3 follicular lymphomas turns into a fast-growing diffuse B-cell lymphoma.

2. Mantle cell lymphoma Mantle cell lymphoma is a rare type of B-cell lymphoma. Mostly, It affects lymph node, bone marrow and often spleen over 
people in their 50s and 60s age. It is also a B-cell lymphoma. However, it is classified as low grade but it grows quickly and 
may be treated more like high grade lymphomas.

3. Marginal zone B-cell lymphomas Marginal zone lymphomas are a group of slow growing B-cell lymphomas. They account 5% to 10% of lymphomas and tend 
to occur in people over the age of 60. The cells in these lymphomas look small under the microscope.
There are 3 types of marginal zone lymphoma. 

1. Extra-nodal marginal zone B-cell lymphoma is also called mucosa associated lymphoid tissue lymphoma or MALT 
lymphoma-The most common site for MALT is the stomach due to infection of Helicobacter pylori. 

2. Nodal marginal zone lymphoma-It also called monocytoid B-cell lymphoma which occurs within the lymph nodes 
sometimes can found in bone marrow. It makes up about 2% and more common in women than men over the age 
of 60. 

3. Splenic marginal zone lymphoma-This is a rare type of lymphoma which associated with hepatitis-C virus infection. 
It starts in the spleen and can also be found in the bloodstream. This type makes up about 1% over the age 50. 

4. Small lymphocytic lymphoma
or

CLL

It is also called chronic lymphocytic leukemia (CLL). It makes up about 6% in the UK. In theory, Chronic lymphocytic 
leukemia is the term used for this condition if many of the abnormal cells are in the blood. Doctors call it small lymphocytic 
lymphoma when the disease particularly occurs in lymph nodes. 

5. Lymphoplasmacytic lymphomas 
(including Wald Enstrom’s 

macroglobulinaemia)

It accounts only 1 or 2% and specifically found in the bone marrow, lymph nodes, and spleen peoples over the age of 65. It 
is slightly more common in men than women. People with Wald Enstrom’s macroglobulinaemia have a high level of a protein 
called immunoglobulin M (IgM) in their blood. The protein makes the blood thicker.

6. Skin lymphomas A rare type of NHL is mycosis fungoid. It affects the skin and is also called cutaneous T-cell lymphoma.
7. Hairy cell leukemia It is rare type B-cell lymphoma. It is typically found in the bone marrow and spleen and in the blood. Men are more likely to 

get HCL than women and the average age is around 50.
8. Primary central nervous system 

(CNS) lymphoma
This lymphoma usually involves the brain (called primary brain lymphoma) but it may also be found in the spinal cord, in 
HIV infected people. 
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it is not expressed in hematopoietic stem cell and differentiated B-cells. 
Therefore the B-cell hematopoiesis and other cell lineages are not in 
danger. CD20 is a non-glycosylated transmembrane phosphoprotein 
with four transmembrane domains. It has been a superb biomarker 
for immunotherapies targeting B-cell derived diseases defined by the 
monoclonal antibody tositumomab [11-13]. The success of rituximab 

prompted renewed interest in the study of a variety of clusters 
of differentiation (CD) molecules with the intent to use them as 
potential therapeutic targets. The CD20 molecules play a crucial role 
in cell development and survival and when modulated by antibodies 
result in dysregulation of vital cell survival pathways. Furthermore, 
it exerts various effects upon ligation with anti-CD20 mAbs and can 

Table 1: Sub-types of non-Hodgkin lymphomas (NHL).

High grade NHL

1. Diffuse large B-cell lymphoma 
(DLBCL)

This is the most common type of non-Hodgkin lymphoma in the world. It can affect any age group but mostly occurs in 
older people (the average age is mid-60s). It usually starts as a quickly growing mass in a lymph node deep inside the 
body such as in the chest, abdomen, neck or armpit. It can also start in other areas such as the intestines, bone or even 
the brain or spinal cord. It is slightly more common in men. Genetic tests have shown that there are different subtypes 
of DLBCL

1. Mediastinal large B cell lymphoma-It develop enlarged lymph gland and accounts about 3% in UK.
2. Intravascular large B-cell lymphoma -In this rare subtype and found inside blood vessels, not in the lymph nodes 

or bone marrow. 
2. Burkitt's lymphomas This is a very fast-growing lymphoma. In the Africa it often starts as a tumor of the jaw or other facial bones. It is linked 

to infection with the Epstein-Barr virus It mostly occurs in children and young adults. They make up about 3% cases of 
lymphoma in the UK and USA. It is more common in men (90%) than women.

3. Peripheral T-cell lymphomas 
(PTCL)

It is a group of quickly growing NHLs that develop from mature T-cells and accounts 6%. These are following types and 
have very different characteristics and behavior. 

1. Cutaneous T-cell lymphomas (mycosis fungoid, Sezary syndrome and others): These lymphomas start in the 
skin and accounts 5%.

2. Adult T-cell leukemia/lymphoma: It is caused by HTLV-1 infection. It is rare in the US and more common in the 
Japan, Caribbean, and parts of Africa.

3. Angio-immunoblastic T-cell lymphoma: It accounts only 3% and commonly occurs in older adults. It tends to grow 
quickly in the lymph nodes as well as the spleen and liver. 

4. Extra-nodal NK/T-cell lymphoma, nasal type: It often involves the nose and upper throat but it can also invade the 
skin and digestive tract. It is much more common in parts of Asia and South America.

5. Enteropathy-associated intestinal T-cell lymphoma (EATL): EATL is a very rare type of T-cell lymphoma over 
people 30s and 40s. It usually occurs in the jejunum or ileum. EATL occurs more often in people with coeliac 
disease. It may spread to the liver, spleen, lymph nodes, gallbladder, stomach, colon and skin.

6. Anaplastic large cell lymphoma (ALCL): It found in about 2% young peoples in their 50s and 60s. It usually starts 
in lymph nodes and can also spread to skin.

4. Lymphoblastic lymphoma It is very rare in adults and most common in children and teenagers under the age of 35s. It usually develops from T-cells 
but occasionally develops from B-cells. It makes up about 2% in the UK. It is very similar to acute lymphoblastic leukemia 
(ALL). In lymphoma, the abnormal white blood cells (lymphocytes) are generally in the chest, lymph nodes and thymus 
gland. But in ALL the abnormal cells are mainly in the blood and bone marrow. .

5. Blastic NK cell lymphoma It is a very rare type of T-cell lymphoma and can affect few adults throughout body. It tends to grow very quickly and can 
be difficult to treat. 

6. Hepatosplenic gamma delta
T-cell lymphoma

It is a very rare type that starts in the liver or spleen. It tends to grow very quickly in peoples have suppressed immune 
system due to Crohn’s disease. 

7. Treatment related T-cell 
lymphomas

It sometimes occurs after people have had an organ or stem cells or bone marrow transplant. During this people have 
suppressed immune system resulting have high risk of developing lymphoma.

Figure 1: Schematic representation of mAbs development. This presentation is showing the evolutionary history of anti-CD20 mAbs development from ‘magic 
bullets’ concept to clinical reality against human lymphocytes. Moreover, the USA FDA approved antibodies are showing in green color whereas the India FDA 
approved antibody is showing in blue color.
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induced several cell death mechanism such as complement-dependent 
cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC), 
antibody-dependent cellular phagocytosis (ADCP) and direct induce 
programmed cell death (PCD). Recently, two newly characterized 
cell death pathways induced by anti-CD20 mAbs were reported such 
as lysosome mediated and reactive oxygen species mediated through 
NADPH [12,14-19] (Figure 2).

Learning about the limitations of rituximab and other monoclonal 
antibodies lead to the development of new treatments strategies, 
appropriate modifications in the Fc region of mAbs or development of 
novel anti-CD20 mAbs as well as screening and identification of small 
molecules which have ability to increases levels of CD20 on surface of 
human tumor cells. The increases in CD20 levels on cell surface and 
developing these novel mAbs may be increase more CD20 and antibody 
associations, increases their binding affinity, reducing immunogenicity 
and improving ADCC, CDC and PCD. In an effort to increase their 
cytotoxic activity mAbs have also been conjugated to radioisotopes, 
chemo-toxins and made various modifications in Fc region. The 
purpose of this article is to update the scientific readers those are 
working in the area of recent advances in the biotechnology for the 
development of novel anti-CD20 mAbs and identification of CD20 
modulators for the improvement of immunotherapeutic responses 
against lymphoproliferative disorders.

Development of novel anti-CD20 mAbs
The development of anti-CD20 mAbs against lymphoma diseases 

were started from concept of magic bullets in 1879. The main induction of 
monoclonal antibodies technology or generation was initiated after the 

Kohler and Milstein. His scientific work directed to a great expectation 
that mAbs would provide effective targeted therapy for cancer. Although 
the CD20 specific antibody B1 (renamed tositumomab) was first 
discovered in 1981. However rituximab became the first mAb approved 
by the U.S. Food and Drug Administration (FDA) for use in relapsed and 
indolent lymphoma [8,20]. It is a chimeric (human-mouse) mAb used 
to treatment of CD20 positive B-cell malignancies; eg. non-Hodgkin 
lymphoma and chronic lymphocytic leukemia (CLL) and for some 
autoimmune diseases including rheumatoid arthritis [8,21]. Rituximab 
is the first generation CD20 mAb. It can induce complement-dependent 
cytotoxicity (CDC), antibody-dependent cellular cytotoxicity (ADCC) 
and direct programmed cell death as well as showed cell growth 
inhibition [22,23]. It is widely used for lymphoma therapy alone or in 
combination regimens mainly for relapsed and refractory lymphomas 
[24,25]. R-CHOP chemotherapy remains the typical regimen for 
recently diagnosed DLBCL [26-28]. Ibritumomab tiuxetan (Zevalin) 
and tositumumab (Bexxar) both are murine based mAbs also used as 
radio-immunotherapeutic agents against indolent NHL and follicular 
lymphoma (FL) patients respectively [9,10,29]. However, the efficacy 
of rituximab is modest and often variable especially when used for 
CLL treatment with an objective response rates ranged between 25% 
and 35% [30,31]. Despite the unparalleled success of rituximab some 
patients still failed to respond or more commonly relapsed and become 
resistant after receiving rituximab administration. 

While successes, limitations and elucidations of the mechanism of 
action of rituximab have increased our understanding or knowledge 
and helped in our goal to improve the efficacy and decreasing the 

Figure 2: Identified potential effector mechanisms followed by anti-CD20 mAbs. (1) CDC – Complement dependent cytotoxicity. (2) ADCC – Antibody 
dependent cellular cytotoxicity. (3) PCD – Programmed cell death. (4) ADCP – Antibody dependent cellular phagocytosis. (5) ROS dependent non-apoptotic 
cell death. (6) Homotypic adhesion and Lysosome mediated non-apoptotic cell death. 



Citation: Singh V, Gupta D, Almasan A (2015) Development of Novel Anti-Cd20 Monoclonal Antibodies and Modulation in Cd20 Levels on Cell 
Surface: Looking to Improve Immunotherapy Response. J Cancer Sci Ther 7: 347-358. doi:10.4172/1948-5956.1000373

J Cancer Sci Ther 
ISSN: 1948-5956 JCST, an open access journal Volume 7(11) 347-358 (2015) - 351 

associated adverse effects as well as providing effective therapies for 
those patients who have developed resistance to rituximab. The interest 
in development of anti-CD20 mAbs continues to provide a major focus 
for scientific and clinical investigators alike and it seems to be highly 
probable that this research interest will continue to grow as the new 
generation of anti-CD20 mAbs have developed and tested clinically. 
Currently, there are several new generation anti-CD20 mAbs have 
been engineered and/or modified to improve antitumor activity and 
Fc binding affinity and provide advantages over rituximab that are 
currently undergoing clinical investigation. They may be grouped in 
two categories: second or third generation anti-CD20 mAb.

Second generation mAbs designed as humanized or fully human 
with unmodified Fc domain, the purpose of reducing immunogenicity 
compared to chimeric mAb rituximab. Second generation mAbs 
include Ocrelizumab, veltuzumab and ofatumumab. Ocrelizumab and 
veltuzumab are humanized while ofatumumab is fully human antibody. 
Ocrelizumab (PRO70769, 2H7) is a humanized type I anti-CD20 IgG1 
mAb. It has differences in several amino acid positions within the 
CDRs variable regions of the light and heavy chain as compared to 
rituximab. Thus it demonstrated superior binding affinity for the low-
affinity variants of the FcγRIIIa receptor (CD16). Moreover it showed 
higher ADCC and lower CDC activity as compared to rituximab 
toward lymphoid malignancies. Currently, this mAb has been evaluated 
through a phase I/II study in patients with relapsed/ refractory 
follicular lymphoma (FL) after rituximab failed therapy and showed 
superior efficacy and safety [32,33]. Veltuzumab is another humanized 
type I anti-CD20 IgG1 mAb identical to rituximab with single amino 
acid substitution (Asp101 instead of Asn101) within the CDR3 of the 
variable heavy chain resulting showed reduced off-rate [13,34]. It also 
showed anti-proliferative, apoptotic and ADCC effects in vitro similar 
to rituximab but this modification results more potent binding avidities 
and a stronger effects on CDC as compared to rituximab [32,35]. In 
addition, the administration of very low doses either intravenous or 
subcutaneous routes it showed a potent anti B-cell lymphoma activity 
in cynomolgus monkeys (Macaca fascicularis) and reduced tumor 
growth in mice bearing human B-cell lymphomas [34]. Moreover, it 
achieves efficient delivery into the blood and pharmacologically active 
when administration subcutaneously compared to other routes. Of 
these novel mAbs, ofatumumab is at the most advance stage of clinical 
development with slow off-rate and high CDC activity. Ofatumumab 
(OFA) is a fully human type I anti-CD20 IgG1к mAb. It recognizes an 
overlapping epitope on the small and big extracellular loop of CD20. 
Moreover, it showed better complement activation as compared to 
rituximab against both rituximab sensitive and resistant non-Hodgkin 
lymphomas cell lines expressing high levels of complement defense 
proteins and low levels of CD20 antigen which failed to undergo CDC 
with rituximab [36-42]. In addition, it showed higher potential activity 
than rituximab because of the high capacity for C1q activation. It also 
showed better response against relapsed/ refractory FL and successively 
in a phase I/II dose escalation study with an overall response rate 
(ORR) of 43% [43]. Importantly, in a phase I/II studies on lymphoma 
and leukemia (specially on CLL) also showed increased complement 
activity without further increase in toxicity [40,43]. Possibly, the 
ofatumumab may be give rises to superior efficacy in combination with 
chemotherapy for tumor clearance and this is being investigated in 
ongoing trials in both FL and DLBCL. 

Likewise, the third generation humanized mAbs are modified 
mAbs in the Fc region. The Fc domain was engineered with the 
glycol or protein. The main goal of this modification is to improving 
the therapeutic efficacy in all patients; particularly patients in which 

expression with low affinity version of the Fc receptor are found on 
their tumor cells. 

Third generation anti-CD20 mAbs include AME133v, Pro131921 
(v114), GA101, R603/EMAB-6 and TRU-015.They are ongoing 
in early phases of clinical development. AME-133v (LY2469298, 
ocaratuzumab) is an Fc protein engineered humanized type I IgG1 
mAb which currently being evaluated in a Phase I/II dose escalation 
study in patients with relapsed/refractory follicular B-cell NHL [44]. 
In vitro study suggested that it has 13 to 20 fold more binding affinity 
with CD20 and 5-7 fold higher avidity to the low affinity (F/F and F/V) 
variants of FcγRIIIa receptor thereby improving killing of B-cell NHL 
∼10 fold as compared to rituximab [44-46]. Although, the clinical trial 
with AME-133v are currently ongoing and it will need to be compared 
to rituximab in randomized clinical trials to substantiate its potential 
clinical advantages. Pro131921 (v114) is derived from 2H7. It is 
another humanized IgG1 Fc protein engineered antibody and displays 
30-fold more binding affinity to the low variant of FcγR (RIIIa: FF or 
FV) over rituximab [47-49]. In vitro study revealed that it has higher 
binding affinity showed improved ADCC activity about 10 fold more 
as compared to rituximab. Although, preclinical studies in non-human 
primates (cynomolgus monkeys; Macaca fascicularis) revealed that 
treatment with Pro13192 is associated in a dose-dependent reversible 
neutropenia and thrombocytopenia [49]. However, Phase I/II clinical 
studies demonstrated better anti-tumor efficacy in patients with 
relapsed and /or refractory indolent lymphoma who failed rituximab 
containing regimens [50]. But, clinical development has been recently 
terminated due to assess safety of escalating doses of Pro13192 in 
patients with NHL and CLL. LFB-R603/EMAB-6 (Ublituximab, LFP) 
is another chimeric glyco-engineered IgG1 mAb showed enhanced 
FcγRIII affinity. It was raised in rat cell lines YB2/0 using EMABLING 
technology thus resulting in naturally low fucose contents in its Fc 
region [51]. LFB-R603/EMAB-6 has similar CDC and PCD activities 
whereas ADCC response rate found about 35% higher at 50ng/ml 
while rituximab induced less than 5% at the same concentration in low 
CD20 expressing CLL cells [51]. Furthermore, preclinical studies also 
revealed that it can disrupt NF-κB/Snail/RKIP/PTEN/AKT signaling in 
B-cell NHL cell lines that are resistant to chemotherapy and immuno-
chemotherapy [52]. It is currently in a Phase I/II clinical study in 
CLL. In contrast to the other anti-CD20 mAbs GA101 (RO5072759, 
obinutuzumab) also known as the gazyva is the first fully humanized 
type II IgG1 mAb which have glycol-engineered Fc domain with non-
fucosylated oligosaccharides to enhance the interaction with FcγRs 
particularly FcγRIIIa (CD16) therefore showed enhancing ADCC 
activity compared to other anti-CD20 mAbs [53-56]. Recently (in 
November 2013) it has FDA approved mAb for use in combination 
with chlorambucil to treat patients with previously untreated chronic 
lymphocytic leukemia (CLL). Preclinical studies suggested that the 
modified Fc region of GA101 improved about 50 fold binding affinity 
to FcγRIII and 10 to 100 fold increased cell death through ADCC 
mechanism against CD20 positive NHL cell lines [57-60]. Moreover, 
in vitro study also demonstrated that modification in elbow hinge 
regions promotes direct programmed cell death mechanism in several 
NHL cell lines and primary malignant B-cells [12,49]. However, these 
modifications result in reduced CDC activity [61]. GA101 has also 
showed superior therapeutic efficacy in subcutaneous lymphoma 
xenograft models of diffuse large B-cell lymphoma and mantle cell 
lymphoma when used as monotherapy or in combination with 
cyclophosphamide [62-65]. As compared to rituximab GA101 showed 
significantly superior B-cell depletion not only in peripheral blood but 
also in spleen and lymph nodes in non-human primates and hCD20 
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transgenic mice [61,63,64,66-68]. GA101 demonstrated a favorable 
safety profile with no dose-limiting toxicities during phase I/II study 
in patients with relapsed/refractory CD20 positive cells including 
CLL, DLBCL and other NHLs [69]. Moreover, the pharmacokinetics 
of GA101 is mostly comparable to those of rituximab and dose-
dependent. However, the significant inter and intra-patient variabilities 
have been observed. Therefore, the clinical relevance further will need 
to be investigation. TRU-015 ((CytoxB20G) is a single chain anti-
CD20 molecule that is a small modular immuno-pharmaceutical drug 
composed of human IgG1 Fc and CH2 and CH3 hinge regions which 
linked directly to an anti-CD20 specific Fv regions [70-72]. It has high 
ADCC and low CDC activating potential. It is currently in Phase II 
clinical development for inflammatory disease is ongoing particularly 
against rheumatoid arthritis [73,74]. 

Modulation in CD20 Surface Levels
A number of CD20 mAbs are now used in clinical practice or 

are in different stages of development (Table 3). Most of them such 
as rituximab, 90Y-Ibritumomab, tositumomab, ofatumumab and 
Obinutuzumab (GA 101) have been FDA approved for use in NHLs 
and RA. All anti-CD20 mAbs are biochemically and functionally 
divided into two distinct subtypes such as rituximab-like type I and 
tositumomab-like type II as shown in Table 2 [75,76].

In clinical applications, the efficacy of anti-CD20 mAbs seems to 
be decline after a period of months of treatments due to therapeutic 
resistance. Actually the explanation for this therapeutic resistance is not 
clear. The possible mechanisms of this resistance of B-cell NHLs against 
anti-CD20 mAbs therapy may be include three patterns: (I) Protection 
of the tumor cells from mAbs mediated depletion of B-cell lymphoma 
by ADCC, CDC and apoptotic stimulation (II) Inadequate binding of 
mAbs to the CD20 molecule and (III) Low levels of CD20 antigens on 
cells surface or reduce CD20 surface levels on cells.

Although, some investigators provide information that decreased 
levels of CD20 expression and/ or harbor low levels of CD20 on surface 
of malignant B-cells may be one of the major contributing factors for 
antibody response [103,104]. However, there is general agreement that 
diseases such as chronic lymphocytic leukemia display the CD20 cell 
surface molecules in fairly low levels and respond proportionally less 
as compared to others low grade B-cell malignancies [30,104-106]. 
Some studies are strongly suggested that cytokines, some inhibitors 
and radiation exposure showed strong ability to significantly induced 
expression of CD20, HER2 and EFGR at both total protein levels as 
well as availability on cell surface specifically in malignant cells, not 
on normal cell lineages. In relation to CD20 expression some reports 
provide strong evident that bryostatin-1, interleukin-4, granulocyte 
macrophage colony stimulating factor, tumor necrosis factor-α, 
interferon-α and γ radiation have strong ability to induce changes in 
CD20 expression at transcription, translation and epigenetically as well 
as their associated transcription factors as showing in Table 4 [107-113].

The bryostatin-1 induced increases in CD20 expression were 
found at the transcriptional level. The effects of bryostatin-1 on CD20 
expression in NHL derived cells was apparently mediated through 
the MAPK/ERK signal transduction pathway and involved protein 
kinase C [111]. An increase in CD20 transcription was also shown 
to be triggered by CpG independently of PU.1 transcription factor in 
CLL cells [128]. Recently, it was also showed that L-744,832 induced 
inhibition of farnesyltransferase activity leads to up-regulation of CD20 
levels and to improved human tumor cell killing activity followed by 
anti-CD20 mAbs. Moreover, the inhibition of farnesyltransferase 
activity was found to be associated with increased binding affinity of 
PU.1 and Oct-2 to the CD20 promoter sequences [117]. Bortezomib a 
proteasome inhibitor have potential to induced expression of COOH-
terminal region of the internal domain of CD20 but not the whole 
CD20 molecule [118]. Recent study addressed the potential activity of 
bortezomib in more detail that the unexpected negative influence of 
proteasome inhibitors on the CD20 levels as well as rituximab mediated 
CDC and ADCC toward CD20 positive B-cell malignancies [119]. 
The CD20 expression is also regulated by epigenetic mechanisms. For 
example 5-azacytidine (inhibitor of DNA methyltransferase activity) 
can significantly increases the CD20 expression in B-cell lymphoma 
[120] and trichostatin-A (a modulator of histone-acetylation status) 
also have ability to increases CD20 mRNA and protein levels in 
RRBL1 cells, a B-cell lymphoma cell line [121,122]. Two other HDAC 
inhibitors such as valproic acid (VPA) and romidepsin both have ability 
to increased CD20 expression at protein and mRNA levels in B-cell 
lymphoma cell lines. The VPA-mediated increase in CD20 expression 
is clinically achievable and safe, but insufficient for inducing cell death. 
Moreover, it is also revealed that HDAC inhibitors trans-activated the 
CD20 gene promoter through hyper-acetylation and Sp1 recruitment 
[123]. Whereas, other reports are exploited that CD20 antigens is 
down-regulated by anti-CD20 mAb rituximab treatment. It is a well-
recognized phenomenon in patients with non-Hodgkin’s lymphomas 
particular in chronic lymphocytic leukemia (CLL). In CLL, rituximab 
mediated down modulation of CD20 is associated with reduced levels 
of CD20 mRNA at in vitro and in vivo indicating regulation of CD20 
expression at the level of transcription [129,130]. Recently it is also 
reported that initially CD20 antigens disappeared in patients with 
CLL treated with rituximab containing salvage regimens occurred in 4 
out of 8 (50%) tested patients after some time CD20 levels returned at 
progression or recovered. Half of whom developed Richter’s syndrome 
[131]. One more report indicated that lenalidomide or CD40 ligation 
in normal B-cells down regulates CD20 levels [132,133]. Radiation 
induced changes in CD20 expression on B-cell lymphoma were 
identified first time in 1997 by Philippe et al. [131]. Later on, Kunala 
et al. was also suggested that exposure of ionizing radiation (10Gy) 
can significantly increases CD20 surface expression in a dose and time 
dependent manner in IM9, IM9/Bcl-2 and Ramos neoplastic B-cell 
lines. In contrast, he was also investigated that CD20 expression was 
not induced in CD20-negative Molt-4 cell line whereas it was increases 
only about 25% in the GM1310B normal B-cell line. Moreover, the 
overexpression of Bcl-2 protein does not inhibited radiation induced 
CD20 expression. In addition, the treatment of cells with actinomycin-D 
is known to inhibit RNA synthesis followed by 10Gy γ-radiation. This 
suggests a transcriptional regulation of CD20 expression rather than 
a simple alteration in cell surface morphology or surface level of 
CD20 on the targets cells [126,127]. Gupta et al. strongly suggested 
that the significant increases in cell surface expression of CD20 were 
transient and cell type dependent manner in logarithmically growing 
Daudi and Raji cells followed by 0.5 and/or 1.5Gy radiation exposure. 
The enhanced expression of CD20 antigen was associated with Table 2: Following are general differences between type I and type II anti-CD20 

mAbs.

Function Type I Type II
Modulation of CD20 antigen Redistribute 

CD20 to lipid rafts
Yes No

CDC High Minimal
ADCC High High

Homotypic adhesion Weak Strong
Apoptosis induction Caspase 

dependent
Caspase independent 
Lysosome mediated
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transcriptional up-regulation of CD20 mRNA and CD20 regulatory 
transcription factors. Moreover, the changes in CD20 surface levels 
were found to be correlated with overall changes in oxidative stress 
and mitochondrial membrane potential [112]. Recently, Singh et al. 
demonstrated that sub-lethal dose (0.5Gy) of γ-radiation can induce ~3 

fold CD20 levels on Burkitt’s lymphoma cell line ‘Daudi’ and it was also 
associated with changes in oxidative condition in intracellular milieu 
[124,125]. Moreover, cytokines which involved in CD20 expression 
also cause robust intracellular oxidative bursts. Accumulating evidence 
indicates that CD20 expression in malignant cells can be modulated 

Table 3: List of anti-CD20 monoclonal antibodies.

CD20 mAbs MFC/ Type Source Regimen
(dose mg/m2)

Mechanism of 
action

G
en

er
at

io
n

Rituximab
(Rituxan, MabThera 

and Zytux)
Approved in US 1997

Biogen, Idec and 
Genentech

Type I
mAb

Chimeric Rituximab (166 patients with Refractory/ relapsed FL, ORR 48%) 
[8,77,78]
R-GMCSF (49 Patients with relapsed FL, ORR 74% [79]
R-bendamustine (33 patients with Relapsed FL or MCL, ORR 70%) 
[80,81]
R-CHOP (63 Untreated patients of DLBCL, ORR 90% ) [82]

CDC, ADCC, PCD, 
ADCP

Fi
rs

t

Y90 -Ibritumomab 
tiuxetan (Zevalin)

Approved in US 2002

Biogen IDEC 
Pharmaceuticals Corp

Type I
mAb

Murine IgG1κ Zevalin (54 patients of Rituximab refractory FL, ORR 74%) [83,84] 
Zevalin vs Rituximab, randomized multicenter study (143 patients of 
Relapsed or refractory FL, ORR 80 vs 56%) [84,85]

High CDC
Low ADCC

Tositumomab (B1)  
and I131-Tositumomab 

(Bexxar)
Approved in US 2003

Corixa, Glaxo
Smithkline

Type II
mAb

Murine IgG2aλ Bexxar (250 patients of Relapsed/refractory indolent FL and 
transformed NHL, ORR 47%-68% repectively) [86]
Bexxar (76 patients of Stage III or IV FL, ORR 95%) [87]
Bexxar +Fludarabine (35 patients of Early stage FL, ORR 98%) [88]
Bexxar vs tositumomab (78 patients of Relapsed or refractory NHL, 
ORR 55% vs 19%) [89-91]

High PCD
Low CDC

Reditux
Approved in India 

2007

Dr. Reddy Laboratories
Type I
mAb

Murine IgG1 Reditux (72 patients of DLBCL, CR 82%) [92] Biosimilar

Ocrelizumab
(2H7; PRO70769)

Phase III

Genentech /Roche/ 
Biogen
Type I
mAb

Humanized IgG1 Ocrelizumab (47 patients of Relapsed/Refractory FL, ORR 38%) 
750 [33]

High ADCC
Low CDC

S
ec

on
d 

(H
um

an
iz

ed
 a

nd
 F

ul
ly

 
H

um
an

)Veltuzumab (IMMU-
106; hA20)

Phase II

Immunomedics USA
Type I
mAb

Humanized IgG1κ Veltuzumab (82 patients of Relapsed/refractory B-cell NHL) 80-750 
[32]
44% ORR in  FL
83% ORR in MZL
43% ORR in DLBL

High CDC

Ofatumumab
(2F2; HuMax-CD20; 

Arzerra)
Approved in US 2009

Genmab, 
Glaxosmithkline

Typr I
mAb

Fully Human IgG1κ OFA, 500-1000 (116 patients of Refractory FL, ORR 13-10%) [93]
OFA-CHOP, 500-1000 (59 patients of Untreated FL, 90-100%) [94]
OFA-FC, 500-1000 (61 patients of Frontline therapy for CLL, 77-
73%) [95]

High CDC

Ocaratuzumab
(AME-D, AME-133)

Phase II

Mentrik Biotech, 
Applied molecular 

evolution
Type I
mAb

Humanized 
IgG1(Engineered Fc 

portion)

Ocaratuzumab, 100-375 (56 patients of Relapsed/Refractory FL, 
ORR 36%) [96]
Ocaratuzumab, 375 (50 patients of Relapsed/Refractory FL with low-
affinity genotype of FcγRIIIa, ORR 30%) [97]

High ADCC

Th
ird

 (H
um

an
iz

ed
 o

r f
ul

ly
 h

um
an

 w
ith

 m
od

ifi
ed

 F
c 

re
gi

on
)

PRO131921
(RhuMAb; v114)

Phase I/II

Genentech
Type I
mAb

Humanized 
IgG1(Engineered Fc 

portion)

PRO131921, 25-800 (24 patients of Relapsed/refractory B cell NHL, 
ORR 27%) [98]

High CDC
Low ADCC

Obinutuzumab 
(GA101;Gazyva)

Approved in US Nov 
2013

Roche
Type II
mAb

Humanized IgG2κ 
(Glycoengineered Fc 
portion)

GA101, 1600/800- 400/400 (29 patients of Refractory B-cell NHL, 
ORR 60-35%)  [99]
G-CHOP, 1600/800-400/400 (28 patients of Relapsed or refractory 
FL, ORR 94%) 
[100,101]
G-FC, 1600/800-400/400  (28 patients of Relapsed or refractory FL, 
ORR 93%) [100]

High PCD & 
ADCC,

Low CDC

Ublituximab
(LFB-R603, EMAB-6)

Phase I

GTC Bio therapeutics, 
LFB Biotechnologies

Type I
mAb

Chimeric; IgG1
Glycoengineered

Ublituximab, (12 patients of Advanced CLL, ORR 35%) [102] High ADCC

TRU-015
Phase II

Trubion 
Pharmaceuticals Inc., 

Wyeth
Single chain protein

SMIL 37 patients of RA patients [74] High ADCC
Low CDC
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at transcriptional, transcriptional, posttranscriptional and even 
posttranslational levels and their occurrence and significance may 
be vary depending on the type of malignancies. However, the precise 
mechanisms of changes in CD20 expression still unclear and further 
need to be investigation. 

Conclusion
In conclusion over the last 10 years rituximab is used against the 

treatment of all common B-cell malignancies. Based on this success, 
limitations and elucidation of the mechanism various novel anti-
CD20 mAbs has been developed to improved clinical outcomes with 
outstanding performance in ADCC, CDC and PCD and reduced 
immunogenicity. Although, the mechanisms of action of each anti-
CD20 mAbs has been well studied in preclinical settings. However, the 
variability seen in clinical responses of these mAbs may be depend on 
level of CD20 expression, levels of circulating soluble CD20, presence 
of effector cells, CD20 binding epitope and kinetics, binding with Fc 
receptors, tissue distribution and tumor burden. Singh et al. recently 
published a report provide information that sub-lethal dose of radiation 
can induced CD20 surface levels on cells determined efficacy of both 
type I (rituximab) and type II (tositumomab) anti-CD20 mAbs in 
vitro. However, more preclinical and clinical investigations need to be 
confirmed. Therefore, the ability to selectively control CD20 expression 
and appropriate modifications in Fc domain of mAbs may be great 
importance in enhancing therapeutic values and in optimizing anti-
CD20 immunotherapy and radio-immunotherapy. The modulation 
in CD20 expression may provide more binding sites for anti-CD20 
mAbs and may play a major role in therapeutic response. Based on this 
information and previous data we suggested that use of external beam 
radiotherapy (in a site selective manner) just prior to immunotherapy 
may be beneficial for tumor clearance and maximum clinical outcomes. 
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