
Volume 7   Issue 5 • 1000364
J Alzheimers Dis Parkinsonism, an open access journal
ISSN:2161-0460

OMICS InternationalMini Review

Li et al., J Alzheimers Dis Parkinsonism 2017, 7:5
DOI: 10.4172/2161-0460.1000364Journal of 

Alzheimer’s Disease & ParkinsonismJo
ur

na
l o

f A
lzh

eim
ers Disease & Parkinsonism

ISSN: 2161-0460

*Corresponding authors: Jiong Shi, Department of Neurology, Barrow Neurological 
Institute, St Joseph’s Hospital and Medical Center, 240 West Thomas Road, Phoenix, 
AZ 85013, USA, Tel: 1-602-406-403; E-mail: jiong.shi@dignityhealth.org 

Li Guo, Department of Neurology, The Second Hospital of Hebei Medical 
University, No. 215 Heping West Road, Shijiazhuang, Hebei Province 050000, 
China, Tel: 86-0311-66007345; E-mail: guoli6@163.com 

Received August 08, 2017; Accepted August 18, 2017; Published August 25, 
2017

Citation: Li S, Cao R, Guo L, Shi J (2017) Different Roles of Microglia/Macrophage 
in Ischemic Stroke and Alzheimer’s Disease. J Alzheimers Dis Parkinsonism 7: 364. 
doi: 10.4172/2161-0460.1000364

Copyright: © 2017 Li S, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Keywords: Microglia; Macrophage; Fractalkine receptor; CX3CR1

Microglia and CX3CR1 in the Brain
Microglia are the resident macrophage cells that constitute the 

innate immune system in the central nervous system (CNS). They 
account for 10% of all cells found in the brain [1]. The microglia 
progenitor cells are produced by primitive hematopoiesis in the yolk 
sac [2]. These primitive macrophages (Myb-independent) migrate to 
the developing neural tube to generate microglia. Thus, microglia and 
bone marrow-derived macrophages (Myb-dependent) are genetically 
distinct [3]. They proliferate and activate in most neurological diseases, 
ranging from multiple sclerosis to prion diseases, and play a key role 
in defending against infection, ischemia, trauma, inflammation, tumors 
and neurodegeneration [4]. 

Microglia constantly surveys the brain micro-environment by 
extremely motile processes and protrusions to remove invading micro-
organisms and deleterious debris. They scavenge the CNS for infectious 
agents, plaques and damaged neurons and synapses. They clean up 
unwanted synapses by phagocytosis, playing a key role in synaptic pruning 
and maturation during development, thus maintaining proper neural 
circuit wiring [5]. Since this process must be kept efficient, microphages 
can be rapidly activated by even small pathological changes in the CNS. In 
the case of blood-brain barrier (BBB) disruption, microglia can be activated 
immediately and be switched from the patrolling role to the shielding role 
of the injured site. Activated microglia secretes growth factors to maintain 
the homeostasis of the brain milieu. In addition, activated microglia 
contributes to tissue repair and neural regeneration [4]. 

Any kind of pathologic insult in the brain can activate microglia 
to change their morphologic phenotype from highly ramified cells to 
amoeboid cells. Microglia have two activation phenotypes: the classic 
M1 state (iNOS+ microglia) is a pro-inflammatory state and the 
alternative M2 state (Arg+ microglia) is related to tissue repair [6]. 
Several signaling pathways have been proposed that contribute to the 
polarize M1 state, including Janus kinase (JAK)1/JAK2 signaling [7] 
and Toll-like receptor 4 (TLR4) [8]. In addition, IL-4 combine with IL-
4Rα or IL-13 combine with IL-13Rα1 can activate transcription factors 
such as STAT6, peroxisome-proliferator-activated receptor γ (PPARγ), 
Jumonji domain-containing protein 3 (Jmjd3) and IRF4 thus activate 
microglia toward M2 state [9].

Fractalkine receptor (CX3CR1) is specifically expressed in 
microglia and macrophages. It binds solely to CX3C ligand 1(CX3CL1, 
fractalkine), a potent chemokine, that is mainly expressed by neurons 
[10]. CX3CL1/CX3CR1 signaling pathway forms an interactive crosslink 
between neurons and microglia. It regulates the microglial/macrophage 
cell migration and function [11]. CX3CL1 reduces neuroinflammation. 
Treatment of aged rats with CX3CL1 attenuates age-related increase 
in microglial activation [12]. CX3CL1 is up-regulated in the 
hippocampus during spatial learning by regulating glutamate-mediated 
neurotransmission tone [13]. 

Microglia and CX3CR1 in Stroke and AD
In ischemic stroke, there are evidence of microglia activation, 

cytokine production, blood-borne immune cells infiltration into the 
brain and neuronal death. The insulted brain releases defensive substances 
such as cytokines, chemokines and reactive oxygen species (ROS). The 
cytokines and ROS breakdown the BBB to facilitate peripheral immune 
cells, including monocytes, neutrophils and lymphocytes, to infiltrate 
into the brain. In the acute stage of ischemic stroke, endogenous 
microglia and recruited macrophages are activated and polarized to the 
M2 state. They gradually change into the M1 phenotype [9]. The M1 
state of microglia/macrophage can release cytotoxic substances to elicit 
inflammation that leads to cell death. On the other hand, the M2 state of 
microglia/ macrophage phagocytose cellular debris and release trophic 
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factors [14], which is beneficial for recovery from ischemic stroke. 
Among those peripheral immune cells, macrophages play a crucial role 
in inflammation at the post-ischemic stage. 

The post-ischemic cell death releases ATP, uridine triphosphate, 
and CX3CL1. Because CX3CR1 is mainly expressed in microglia and 
macrophages, it attracts the macrophages to infiltrate into the CNS. 
The protection effect of CX3CR1-/- mice at the early stage of ischemic 
stroke is characterized by the M2 polarization markers. CX3CR1-/- 
mice have showed a decrease in leukocyte infiltration and therefore 
smaller infarcts in a transient middle cerebral artery occlusion stroke 
model [15,16]. 

The contribution of microglia activation in AD could be beneficial 
or detrimental [17,18]. Amyloid-β (Aβ) plaques and neurofibrillary 
tangles are pathological hallmarks of AD. Microglia accumulates 
around Aβ plaques [19]. They are thought to clear Aβ plaques by 
phagocytosis [20]. Microglial phenotype changes from M2 to M1 in 
the progression of AD [21]. Emerging evidence has pointed out that 
polymorphism in the microglia receptor TREM2 is a risk factor for AD 
[22]. However, selective depletion of microglia didn’t change the plaque 
formation or total Aβ load [23]; implying microglia may not affect Aβ 
accumulation or clearance. 

Aβ has been shown to initiate microglial activation and elicit 
chronic inflammation which lead to synaptic dysfunction and cognitive 
impairment [24,25]. Activated microglia accelerates tau pathology and 
impairs working memory in an AD mouse model [26]. Consistently, 
depleting microglia dramatically suppressed the propagation of tau in 
the brain [27]. 

Although CX3CR1-/- is protective against neuronal loss in a mouse 
model of focal cerebral ischemia, it induces microglia activation, 
worsening tau pathology and impaired cognitive performance in a 
double transgenic mouse model that carries CX3CR1-/- and human 
tau protein (hTau-CX3CR1-/-) [26]. This microglia activation precedes 
tau aggregates since at six months of age there is minimal development 
of tau aggregates. However, another study in the 3xTg mouse model 
of AD, CX3CR1 deficiency was shown to prevent neuronal loss [28]. 
The discrepancy in these two studies may be due to using different 
animal models. The 3xTg mice exhibits both Aβ and tau pathologies 
by including three different mutant human transgenes (APP, PSEN1 
and MAPT). Blocking CX3CL1-CX3CR1 signalling actually reduces 
Aβ pathologies in two mouse models (APP-PS1 and R1.40) that only 
over-express extracellular Aβ aggregates [29]. These data suggest 
that CX3CR1 deficiency has opposing effects on the two primary 
pathologies of AD. Aβ pathologies precede tau pathologies by as much 
as 10 years in humans [30]. While blocking CX3CR1 may be beneficial 
at the early stage when Aβ pathology is dominant, its deficiency could 
be detrimental as the disease progresses to the late stage when activated 
microglia and tau aggregation become overriding.

Conclusion
Ischemic stroke and AD are different in aetiology, disease course, 

clinical presentation, treatment and outcomes. But both of them have 
evidence of neuroinflammation in which microglia plays an essential 
role. To understand distinctive stages of microglia and their regulatory 
factors, such as CX3CL1-CX3CR1 is vital to elucidate the underlying 
mechanism of the diseases and to develop effective therapeutic agents. 
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