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Abstract

A recent study revealed that 20%-40% of sepsis survivors suffer from mental disorders, more than a year after
being discharged from the hospital. Although sepsis-associated encephalopathy (SAE) is complicated by septic
conditions and is critically associated with increased mortality, it also leads to neurological dysfunction, which
includes mental impairments. Therefore, finding a suitable treatment for neurological dysfunction is of vital
importance for the survival and long-term prognosis of patients who contracted sepsis. Neuro-inflammation is the
major pathogenesis of SAE, which is caused by the infiltration of inflammatory monocytes into the brain and by the
activation of glial cells. However, the mechanism by which T cells are involved in the pathogenesis of SAE remains
unclear. This review attempts to understand the underlying mechanisms associated with glial cells and T cells in the
development and recovery of SAE and mental impairment following sepsis.

Keywords: Sepsis-associated encephalopathy; T cell; Mental
impairment; Microglia; Astrocyte
Abbreviations: SAE: Sepsis-Associated Encephalopathy; CNS:
Central Nervous System; IL: Interleukin; TCR: T Cell Receptor; Th:
Helper T cell; Treg: Regulatory T Cell; TNF: Tumor Necrosis Factor

Introduction
Sepsis is a life-threatening extreme response to infection, caused by

a dysregulated host immune response [1,2]. Although sepsis remains
one of the leading causes of Intensive Care Unit (ICU) morbidity and
mortality worldwide, the survival rate has improved, especially in
developed countries [3,4]. However, new concerns have been raised
regarding the long-term mortality of sepsis survivors following their
discharge from hospitals. Long-term mortality in septic patients is
called “post-sepsis syndrome,” and is characterized by long-lasting
mental, cognitive, and physical impairments [3]. These symptoms
hinder the ability of sepsis survivors to return to society, and
concurrently increase their risk of readmission to the hospital [5].

Sepsis is known to induce severe systemic inflammation, with the
brain being the first organ to be affected by septic conditions [6],
which are referred to as Sepsis-Associated Encephalopathy (SAE).
Epidemiological studies have reported that up to 70% of septic
patients develop SAE, and that it is associated with mortality [7,8].
Moreover, even though patients can recover from SAE, central
nervous system disturbances (e.g., mental and cognitive impairment)
may persist for more than a year in 20%-40% of patients [9]. Although
the critical pathophysiological feature of SAE is neuroinflammation, it
is a multifactorial disease. It increases the accumulation of pro-
inflammatory cytokines, mitochondrial dysfunction, and oxidative
stress. Moreover, it leads to changes in cerebral homeostasis
(including metabolite neurotransmitters such as glutamate) and blood-
brain barrier dysfunction [10-15]. Although it is known to cause such
distress, the exact underlying mechanism of SAE unfortunately still
remains unclear.

Recent studies suggest that the activation of two types of glial cells
(microglia and astrocytes) is implicated in the development of SAE.
Microglia are macrophage-like immune cells in the Central Nervous
System (CNS) that maintain multiple neurological brain functions via
inflammatory or anti-inflammatory cytokines [16,17]. Astrocytes are
supporting cells within the CNS, and are the most abundant glial cells
in the brain [18]. They help nerve cells survive by providing them
with nutrients and by rapidly removing neurotransmitters (e.g.,
glutamate) [19-21]. Since they do not respond to electric stimulation,
astrocytes were originally considered “silent cells” within the brain.
However, recent findings have revealed that astrocytes express several
kinds of neurotransmitter receptors in the steady-state, and various
cytokines during infection [22,23]. Under septic conditions, these
microglia and astrocytes are rapidly activated, leading to their
proliferation, and subsequent uncontrollable production of
inflammatory cytokines, which alters CNS homeostasis [16,24-26].
Therefore, these glial cells, especially microglia, represent therapeutic
targets for SAEs [27,28].

T cells, a type of lymphocyte, are crucial in the adaptive immune
system. In vertebrates, two main T cell lineages, αβ and γδ, are
defined by the expression of the αβ T Cell Receptor (TCR) and γδ
TCR, respectively. As for αβ T cells, they are further divided based on
their surface markers and function. They can either be CD4+ T cells or
CD8+ T cells. Finally, CD4+ T cells are further divided based on
secretion types, for example, Helper T (Th) 1 cells, Th2 cells, and
Regulatory T cells (Tregs). In sepsis, long-lasting severe T cell
reduction by apoptosis is observed in both human and mouse models,
which are associated with poor outcomes, making it an ideal
therapeutic target for sepsis-induced immunosuppression [29].
However, little is known about the involvement of T cells in the
pathogenesis of SAE and the development of mental impairment
following sepsis [30].

This literature review aims to summarize the current state of
knowledge regarding the underlying mechanisms associated with glial
cells and T cells in the development and recovery of SAE and mental
impairment after sepsis.
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Literature Review

Attenuation and alleviation of SAE and mental impairment
In a septic mouse model, sepsis-induced anxiety-like behaviours

naturally  recovered   within  approximately   two   months  [31-40].
Surprisingly, an increase in the number of microglia was observed
during this time. In fact, this increase was observed for at least 90 days
following sepsis induction [32]. Microglia expresses a wide variety of
receptors on their cell surface, one of which is the fractalkine receptor
CX3CR1 (C-X3-C motif chemokine receptor 1). Expressed/
unexpressed phenotype of microglia is involved in the development of
mental impairment in mice. CX3CR1- microglia increased in the
brains of mice following lipopolysaccharide (LPS)-induced endotoxin
shock [41]. Moreover, CX3CR1-/- mice showed prolonged anxiety
behavior following LPS administration [41]. With regards to sepsis,
we observed an increase in the number of CX3CR1- microglia in the
brains of septic mice, with the phenotype decreasing gradually with
the alleviation of anxiety-like behaviours (unpublished data). These
results suggest that it is essential to investigate the phenotype of
microglia after the onset of sepsis, and to clarify how CX3CR1+
microglia are involved in the alleviation of mental impairments. The
role of astrocytes in the recovery process of SAEs and mental
impairment, however, is not well elucidated. In a previous study, we
showed that astrocyte levels return to baseline levels in the chronic
phase after an initial drop in the acute phase of sepsis [33]. How this
recovery takes place, however, remains unclear.

Discussion
Interestingly, T cells (especially CD4+ T cells) in the brains of

septic mice increased for at least 30 days following sepsis induction
[33]. This observation prompted us to investigate whether it plays a
role in the alleviation of mental impairment following sepsis. To test
this, we treated septic mice with FTY720 to inhibit the infiltration of
lymphocytes into the brain. This resulted in recovery from anxiety-
behaviour being delayed in FTY720-treated septic mice. Moreover,
FTY720-treated septic mice showed notably high mRNA levels of
Il-1β and tumor necrosis factor-α in the brain even 30 days after the
onset of sepsis. More importantly, we observed an increase in the
number of CX3CR1- microglia and a reduction of astrocytes in treated
mice, suggesting that infiltrated CD4+ T cells in the brain are involved
in the alleviation of mental impairments via an anti-inflammatory
response. Finally, we confirmed our phenotypic observations using
flow cytometry, and found an increase in Th2 and Tregs cells in the
brain after sepsis [33]. Collectively, increased levels of Th2 and Tregs
cells, in the brain contributed to the attenuation of SAE and alleviation
of mental impairment during the chronic phase of sepsis, via recovery
of brain homeostasis, by resolving the imbalance of astrocytes and
microglia [42,43].

Conclusion and Future Work
Our study showed that infiltration of Treg and Th2 cells in the brain

is critical for the attenuation of SAE and alleviation of mental
impairment. These results could contribute to the improvement of
long-term prognosis and quality of life for sepsis survivors after their
discharge from the hospital. It is important to determine the source of
these T cells. Since the BBB might have been repaired during the
chronic phase of sepsis, it is difficult to conceive of how T cells are
circulating in the blood and infiltrating the brain. Anatomical studies

have shown that the draining lymph nodes of the brain are superficial
cervical lymph nodes (CLNs), deep CLNs, and meningeal lymph
nodes (MenLNs). Clarifying the circulation of T cells in the axis of
Brain-CLN-MenLN under sepsis conditions would be the first step in
the treatment of SAE.
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