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Abstract

Drought is among the top largest causes of agricultural productivity losses globally. Tomato (Solanum
lycopersicum L.) is a commercially important crop considerably hampered by drought. It is considered a drought
sensitive crop with a yield response factor (Ky) 1.05. Although advancements in molecular research and plant
breeding have led to release of drought tolerant cultivars in most developed countries, breeding efforts have focused
on yield as the core selection index particularly in Sub-Saharan Africa (SSA) with less regard for drought tolerance.
Several studies, however, have documented various physiological, morphological and biochemical adaptive drought
tolerance and avoidance strategies in tomatoes and other crop species. It is argued that selection efficiency for
drought tolerance breeding programs would be improved if physiological traits linked to drought tolerance are
considered. This review presents an overview of previous research efforts in understanding physiological responses
to drought, in crop species with particular attention to Solanum lycopersicum (Tomato). It further highlights research
gaps, identifying unexplored domains and suggesting recommendations for future investigation.
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Introduction
It is well documented that tomato (Solanum lycopersicum L.) plays

a critical role in meeting domestic nutritional food requirements,
generation of income, foreign exchange earnings and creation of
employment [1] in Africa and globally. However, notwithstanding its
contribution to poverty alleviation, the tomato industry is faced with a
myriad of constraints along its value chain. These include pest and
disease infestation [1], physiological disorders and drought. Drought
remains a major constraint in tomato farming [2]. Tomatoes are very
sensitive to water stress [3]. It is estimated that reduction in watering
by 15% and 30% would reduce gross revenue by 15% and 22%,
respectively [4]. While production in rainy season may appear
attractive, low yields have been reported [5]. This is attributed to many
leaf diseases that affect the plant in rainy season, such as Phytophthora
infestans, Cladosporium fulvum, Stemphylium solani, Xanthomonas
campestris, and viruses [5]. For example, in a fresh market tomato trial
during a rainy season in Malawi, the highest yielding variety produced
a yield of 36 t/ha, while during the dry season, the highest yielding
variety was at 85.9 t/ha [6]. It is reasonable to infer that dry seasons are
convenient for tomato production. However, limited moisture levels
during dry seasons are equally a major impediment to yield,
particularly when irrigation water supply is limited. Recently, many
parts of the tropics, particularly Southern Africa experienced the El
Nino related drought effects in 2015/2016 growing season, which
reduced cereal yield by 30% and subjected 2.8 Million (16.4% of
population) Malawians to food insecurity [7]. These effects continue to
affect agriculture, hence the need for drought resistant crop cultivars.

During water deficit stress, many physiological and biochemical
pathways are perturbed [8]. An understanding of a myriad of
mechanisms by which plants respond to water deficit has been named
as a challenge to enhancing crop drought tolerance [9,10].
Quantification of physiological responses of plants under water stress
is a viable, reliable and accurate approach in studying water stress
tolerance [11-13]. It is suggested that selection efficiency in breeding
for water stress tolerance could be enhanced if particular physiological
and/or morphological attributes related to yield under a stress
environment could be identified and employed as selection criteria for
complementing traditional plant breeding [14]. However, under
drought conditions, yield has invariably remained the core selection
index in many crops. In developing a breeding program to improve
drought resistance of a crop plant, it is necessary to gain knowledge
concerning both the genetics and physiology of tolerance mechanisms
[15]. Therefore, physiological traits in various plant species and
varieties, with strong correlation with response of plants to drought are
crucial in understanding and exploring water stress tolerance
mechanisms [16]. To achieve effective drought tolerance, crop
improvement and plant breeding programs demand the pyramiding of
many dissimilar traits suitable for different growing environments [17].
Invariably, tolerance to water stress and tissue water deficits often
involves maintenance of turgor under low tissue water potential,
through osmotic adjustment (OA) [18-20] or as a result of the presence
of rigid cell walls or decreased cell size [21].

This review therefore aims at uncovering critical physiological traits
associated with water stress in tomatoes and other plant species. It
further highlights research gaps for future exploration. Understanding
physiology of plants under water stress will provide for a
comprehensive and integrated selection basis in water stress tolerance
breeding programs.
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Physiological Traits Associated with Water Stress
Tolerance in Plants

Chlorophyll fluorescence parameters
Chlorophyll fluorescence (CF) has been widely used in water stress

studies in various plants including tomatoes [22], maize [23], potato
[24], cotton and peanut [25]. It is defined as light that chlorophyll
molecules re-emit upon return from excited to non-excited states [26].
It is used as an indicator of photosynthetic organisms’ ability and
efficiency in photosynthetic energy conversion. It is therefore closely
related to and reflective of plant photosynthesis and the physiological
state of plant. As a consequence, chlorophyll fluorescence has on
numerous instances been utilized as a powerful, non-destructive and
dependable tool for studying the photosynthetic behavior of plants
under water stress [27-30]. When a plant leaf is illuminated, the leaf ’s
chlorophyll absorbs the light which can serve three functions.

• It can be used for the light dependent processes of photosynthesis
in the thylakoids (Photochemistry), excess energy can be
dissipated.

• As heat (or)
• It can be re-emitted as light, herein referred to as chlorophyll

fluorescence [31-33].

These processes compete with each other. As a consequence, an
increased efficiency in chlorophyll fluorescence will result into a
decrease in the other two; photochemistry (photosynthesis) and heat
dissipation. Therefore, an accurate measure of chlorophyll fluorescence
yield, can supply reliable information regarding changes in the
efficiency of photochemistry and heat dissipation [31].

Fluorescence can therefore potentially not only inform tomato’s
ability to withstand environmental stresses such as drought, but also
signal stress induced damage on photosynthetic apparatus [31,34].
Water stress is invariably associated with an increase in minimal
fluorescence parameter (Fo) and an increase in maximal fluorescence
[35]. This leads to a decline in maximal quantum yield of PSII
photochemistry (Fv/Fm) ascribed to inhibited activity of PSII
photosystems reducing the effective quantum yield of PSII
photochemistry (ɸPSII) [36]. For detailed understanding of chlorophyll
fluorescence parameters, refer to Maxwell and Johnson, [34]. It is
substantially corroborated that a decline in Fv/Fm and ɸPSII indicates
photoinbitory damage of water stress to PSII photosystems. Due to
generally low carbon assimilation under these conditions, plants
adaptively reduce electron transport rate (ETR) [22], a phenomenon
which Baker and Rosenqvist 2004 suggest to be an adaptive strategy to
down regulate electron transport to maintain an equilibrium with
production of assimilatory powers; Adenosine Triphosphate (ATP) and
Nicotinamide Adenosine Dinucleotide Phosphate (NADP). These
events in turn increase non-photochemical quenching (NPQ), which is
double edged; may signal reduction in photochemistry or may indicate
plant’s ability to dissipate excess energy through carotenoids in form of
heat (Figure 1). In many cases, these processes are caused as a
consequence of water stress induced oxidative stress, causing plants to
deactivate antennae of PSII, eliciting the above processes. While
pursuit for water stress tolerance continues, chlorophyll fluorescence
serves as an important tool to screen for genotypes that can both
maintain photochemistry, protect PSII reaction centers and dissipate
excess energy while maintaining productivity under water stress.

Figure 1: Chlorophyll fluorescence parameters' response of plants
under water deficit stress conditions. Water stress invariably
increases excess energy absorbed causing photoinhibition. This
inactivates PSII reaction centers. As a response, ground
fluorescence increases while maximal and variable fluorescence
decrease. As a consequence, maximal and effective quantum yield of
PSII photochemistry decrease, thereby decreasing non-
photochemical quenching and decreasing photochemistry. Overall,
this decreases assimilation of carbon dioxide and electron transport
rate.

Photosynthesis, stomatal conductance, and transpiration
rate

On the outermost surface of plant leaves is a waxy cuticle that
prevents loss of water. Generally, however opening and closing of
stomata on the leaf surface controls transpiration rate [37]. Water loss
in plant leaves through transpiration is partitioned into two; stomatal
transpiration and cuticular transpiration. Stomatal transpiration
remains the primary pathway of water loss in plants accounting for
99% while only ~1% of water loss is through cuticles [38]. Therefore,
monitoring stomatal conductance can provide a better insight into
plants water loss through transpiration. Stomatal conductance is
essentially an estimate of transpiration (water loss) rate and gas
exchange (CO2 uptake) through the leaf stomata [39,40]. Decreased
conductance lowers transpiration rate since most stoma are virtually
closed. This is hardly a consequence when water is abundant, for a
growth response to elevated CO2 since ci (internal concentration of
CO2) is sufficient to support photosynthesis. In water limited
conditions, a growth retardant hormone Abscisic Acid (ABA) is
exuded by roots, which acts as root-shoot signals eliciting stomatal
closure [41-43] and reducing stomatal conductance and transpiration.
In a study by Yuan et al. all levels of water stress significantly reduced
stomatal conductance (gs). The study also observed that mild water
stress reduced intracellular carbon dioxide concentration (Ci), and net
photosynthetic rate (PN) suggesting that under mild water stress (55 to
60% of field capacity), the reason for decline in photosynthesis was
stomatal limitation (Ls). However, intensifying the stress to moderate
and severe (45-50% FC and 35-40% FC), (Ci) increased, yet PN
declined. This led the authors to conclude that under moderate to
severe water stress, non-stomatal limitation is the primary cause for
decline in photosynthesis [22]; inhibition of RuBISCO enzyme,
photooxidation and photorespiration. Considering the crucial role of
water in photosynthesis, it is apparent that water stress is highly likely
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to negatively impact photosynthesis through both stomatal and non-
stomatal limitations. Consequently, photosynthesis inhibition (Figure
2) has been substantially reported as one of the prime physiological
implications of drought [41,44]. In another study by Easlon and
Richards [43] both tomatoes and its wild type Lycopersicon pennelli
showed nearly complete stomatal closure when moisture was below
50% of field capacity. In another study by Tembe et al. considerable
decrease in stomatal conductance was observed among water stress
subjected plants in 20 tomato genotypes [45]. Stomatal conductance at
different levels of moisture ranged from 207.7 mmol/m2s to 287.5
mmol/m2s at 100% of the field capacity, 115.5 mmol/m2s to 196.7
mmol/m2s at 80% of the field capacity, 104.0 mmol/m2s to 100.1
mmol/m2s at 60% of the field capacity and 74.0 mmol/m2s to 100.1
mmol/m2s at 40% of the field capacity [45]. This has been generally
accepted as a strategy to aid conservation of moisture and maintain an
adequate leaf water status, consequently reducing leaf internal CO2
concentration and photosynthesis [46]. Active stomatal regulation in
tomatoes is generally indicative of drought avoidance strategy at
species level. Tomato genotypes and its wild types such as Lycopercon
pennelli, that are able to reduce stomatal conductance under water
stress are promising gene pools for water tolerance cultivar
development. Adaptive research may consider producing cultivars that
hyper express ABA to elicit stomatal closure. However, a delicate
balance between reduced stomatal conductance and photosynthetic
rate is more prime. Reduction in water loss may not be justifiable if
associated with a reduction in PN.

Figure 2: Shows stomatal and non-stomatal limitations to
photosynthesis. Under drought stress, Abscisic acid is synthesized
in the roots sending signals to shoots leading to stomatal closure.
This may decrease intracellular carbon dioxide concentration which
may decrease photosynthetic rate. This is termed stomatal
limitation. In the other pathway, drought will reduce leaf water
potential and relative water content which may reduce efficiency
and activity of RuBISCO enzyme thereby limiting carbon dioxide
fixation. This is termed non-stomatal limitation to photosynthesis.

Chlorophyll content
Photosynthetic pigments remain major drivers of plants

photosynthetic capacity due to their crucial role in both absorption
(chlorophyll) and dissipation (carotenoids) light energy. Drought has
severally been reported to affect chlorophyll content in plant leaves,
and the effects vary among species [22,47]. In some species, drought

lowers chlorophyll content while in some no changes are observed. The
intensity of the change depends on the rate of stress and duration
[48,49]. In a study by Pirzad et al. introduced low water stress
increased chlorophyll a, b and total in Matricaria chamomilla L while
high water stress considerably reduced them [47]. In another study by
Beeflink et al. increasing drought stress in onions increased chlorophyll
[50]. Similar results were obtained in other separate [51,52]. It is thus
evident that effects of water stress on chlorophyll is species specific. In
young peach trees for example, drought stress has been reported to
decrease chlorophyll [53,54]. These results attributed the reductions in
chlorophyll concentrations to the increased electrolyte leakage due to
leaf senescence [47]. Water deficit affects chlorophyll content by
destroying the chlorophyll or simply preventing its synthesis [55].
Several other hypotheses have been suggested explaining reduced
chlorophyll under water stress. Some authors suggest that the decline is
an adaptive strategy by the plant to reduce chlorophyll content so as to
minimize absorption of excess energy [56] while others assert that it is
as a result of photo-oxidatory damage by excess light energy absorbed
[57]. Besides, it has been investigated that light, even of low photon
flux density (PFD) becomes excess under low water conditions [35]. In
a study by Pirzad et al. it was concluded that water stress; both excess
water and deficit significantly decreases leaf chlorophyll (chlorophyll a,
b and total chlorophyll) concentrations [47].

Since effects of water deficit stress on chlorophyll content is species
dependent, it also remains highly likely that different tomato landraces
may exhibit altered responses to drought. Considering the higher
diversity of tomato landraces particularly in the tropics, most of which
are at risk of extinction, it is an urgent call for plant breeders to
characterize and document tomato landraces with such important
attributes as resistance to chlorophyll degradation under abiotic stress.
These may be priorities of conservational efforts to serve as germplasm
sources for new cultivar development.

Accumulation of reactive of oxygen species (ROS) and
antioxidants

A common consequence of abiotic stress, drought inclusive is the
accumulation of ROS. A number of RO species are reported, including
radicles like superoxide anion (O2

.-), singlet oxygen (-O2) and hydroxyl
onion (.OH) while non-radical forms include hydrogen peroxide
(H2O2). For a detailed review on ROS types, formation and
antioxidants, refer to Sharma et al. [58]. These ROS species have been
found to be cause peroxidation of lipids, oxidation of proteins, damage
to nucleic acids, enzyme inhibition, eliciting programmed cell death
(PCD) pathway and ultimately causing death [58]. However,
notwithstanding their potentially destructive nature, recent studies
report that moderate accumulations, balanced with sufficient
scavenging ability may act as second messengers under abiotic stresses
(Figure 3). Therefore, ROS will only be damaging when their synthesis
way supersedes their scavenging. A number of studies have
demonstrated that water stress induces hyper accumulation of ROS
[58-61]. A common approach to assess this is to quantify scavenging
activity by monitoring antioxidant enzymes. These include superoxide
dismutase (SOD), peroxidase (POD e.g., guaiacol peroxidase and
ascorbate peroxidase) and catalase (CAT). Yuan et al. while working on
water stress in tomato, they found a significant increase in SOD, CAT
and POD [22]. This may implicitly indicate accumulation of ROS,
which these antioxidants are scavenging. The study further found an
increase in Malondialdehyde (MAD), which is indicative of
peroxidation of lipid membranes. This made them conclude that water
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stress caused an oxidative stress induced membrane damage. In a heat
stress study, it was demonstrated that ROS were the prime cause of
lethality under heat stress in yeast [62]. Growing yeast anaerobically,
prevented accumulation of ROS, and consequently prevented cell
death. This led to a conclusion that ROS is what causes cell death
under heat stress. While this conclusion has been only demonstrated in
heat stress induced yeast, it is plausible that a similar phenomenon
may occur in plants. If ROS may prove to be primary lethal agents
under stress, finding ways to eliminate them may offer new strategies
for achieving tolerance under drought stress. This may inform such
breeding efforts as to overexpress antioxidants under drought stress.
Moreover, moderate accumulation is suggested to aid in secondary
signaling. These are wakeup calls for more research attention on ROS.

Figure 3: Reactive Oxygen Species (ROS) synthesis and their
scavenging by antioxidant enzymes. Under water stress conditions,
electron acceptors (NADP) are exhausted and instead, molecular
oxygen picks up electrons. This forms superoxide anion which may
be scavenged by superoxide dismutase enzyme a product of which
is hydrogen peroxide, a non-radicle ROS. This may undergo Fenton
and Haber-Weiss reaction to produce the most damaging RO
species, hydroxyl radicle. When scavenging is good, by both
enzymatic and non-enzymatic antioxidants, hydrogen peroxide
may be scavenged into water by Peroxidase enzymes and Catalases.
Also, it may oxidize Thior and may be used in cellular signaling. In
absence of scavengers, ROS may cause peroxidation and ultimately
cell death, killing the plant.

Concentration of potassium (K+) in leaf tissues
Potassium is the crucial essential macronutrient required by plants

for optimum growth. Various studies have supported their critical role
in plants biochemical and physiological processes key in growth and
metabolism [63]. Substantial evidence supports the role of K in biotic
and abiotic plant stress tolerance [64-66]. In many plants, potassium
remains the primary inorganic cation to accumulate in leaf tissues
subjected to water stress and is found in abundance as a solute in
leaves [67,68].

Water maintains turgidity of cells which leads to enlargement and
growth of cells. Potassium plays a central role as an osmolyte, aiding
osmotic adjustment [64], a phenomenon in which solutes accumulate
in plant cells in response to a decline in cellular water potential. This
enables continued growth under low water potential. Osmotic
adjustments have been observed in several species and substantiated
by evidence to aid in stomatal conductance, photosynthesis, leaf water

volume and growth [18,19]. Many studies have reported a positive
correlation between osmotic adjustment and drought tolerance in
several plant species [20]. Overall, enhanced osmotic adjustment aided
by adequate K enables maintenance of higher turgor pressure, relative
water content and lower osmotic potential, thereby enhancing plants
ability to tolerate drought stress.

Additionally, maintenance of a higher Potassium concentration in
plant tissues promotes root growth by increasing root elongation [69],
consequently increasing root surface area that is exposed to soil as a
result of increased root water uptake [65]. Other researchers have also
confirmed the role of K in water retention in plant tissues under water
stress [70]. Furthermore, K improves cell membrane integrity [63]
which normally decline under drought stress [71]. Moreover, it is well
documented that K+ regulates opening and closure of stomata.
Therefore, in water deficit conditions, rapid closure of stomata and
conservation of internal moisture are desirable adaptive traits [69]. It is
suggested that under drought conditions, an adequate K+

concentration will enable stomata closure. However, contrasting views
exist as to whether presence of K in leaf tissues under water stress
would enable opening or closing of stomata [69,72,73]. Some studies
suggest that under well-watered conditions, K would promote stomatal
opening and transpiration, hence no effect was observed on stomata
conductance and photosynthesis while the converse is hypothesized
under water stress conditions [74,75].

Since maintenance of adequate K nutrition is critical in precluding
drought stress damage by adjusting water balance, there is a need,
therefore for more studies on such nutrient cum stomatal conductance
relationships in selected cultivars of Tomato. Information on the
influence of K content in leaf tissues on water stress adaptation, may
further accurately guide farmers in selection of appropriate
fertilization and soil health management options aimed at attaining
cation balance ideal for water deficient conditions.

Electrolyte leakage (EL)
Electrolyte leakage is an upcoming technique widely being used to

assess the effect of biotic and abiotic stresses on the physiology of
plants. Two forms of electrolyte leakage are usually assessed; root
electrolyte leakage (REL) and shoot electrolyte leakage SEL). They both
elucidate the integrity of cell membranes to hold water and minerals.
In plants, water is stored in two key pathways; the symplast and
apoplast separated by a cell membrane. Water resident in the apoplast
is nearly pure, while symplast water contains a variety of ions.
Considering the semi-permeable nature of cell membranes, passage of
water across the membrane only depends on the plants need for water
while ions are restricted in entirety. As a consequence, under drought
conditions, membranes are damaged by reactive oxygen species (ROS)
released perturbing membrane integrity allowing ion leakage. Hence
quantifying the amount of ions leaking into the solution across the
membrane can indicate viability of the root and shoot system [76]. In
this view, EL has been adopted in understanding water stress [77,78],
heat and salt tolerance in various crop species [79]. In many crop
species including tomatoes, EL is assessed using procedures described
by Lutts et al. [80] and Mao et al. [81]. In a study by Jungklang et al.
subjecting Curcuma alismatifolia plants to water deficit stress
considerably reduced electrolyte leakage [78]. This is indicative of
drought tolerance mechanism in the species through maintenance of
membrane integrity and reduction of electrolyte leakage. The study
further established that EL was significantly reduced when drought
subjected plants are treated with a growth retardant Paclobutrazol

Citation: Kamanga RM, Mbega E, Ndakidemi P (2018) Drought Tolerance Mechanisms in Plants: Physiological Responses Associated with
Water Deficit Stress in Solanum lycopersicum. Adv Crop Sci Tech 6: 362. doi:10.4172/2329-8863.1000362

Page 4 of 8

Adv Crop Sci Tech, an open access journal
ISSN: 2329-8863

Volume 6 • Issue 3 • 1000362



(PBZ), a clear indication of its critical role in protecting membranes
from damage in drought stress [78]. While electrolyte leakage has been
widely used in many crop species and tree seedlings, to assess salt,
heat, water and biotic stress tolerance, research efforts must be scaled
up to authenticate its effectiveness in monitoring water deficit stress in
tomatoes.

Leaf relative water content (RWC)
Leaf RWC has recently emerged to be a popular trait in assessing

drought tolerance in crops and has slowly replaced leaf water potential
[82]. It is reasonable to assert that leaf water content contributes to
plant-level physiological drought tolerance [16]. Consequently, from
mid-80’s, leaf Relative Water Content (RWC) is now regarded as a best
criterion for plant water status. Leaf RWC is defined as the percentage
of water present at the time of sampling, in relation to the amount of
water in a saturated leaf [83]. Since RWC relates well with cell volume,
it can accurately indicate the balance between absorbed water by plant
and that lost though transpiration [82,84], hence it is an important
indicator of water status in plants. Furthermore, the close correlation
of RWC with a plants physiological activities and soil water status
[85,86], qualifies it as a reliable trait, for assessing plants tolerance to
drought stress.

While screening for water stress tolerance in long storage tomato
genotypes, it was observed that leaf RWC significantly decreased as
drought stress progressed [87] in all genotypes. In another water stress
tolerance study in wheat by Schonfeld et al. it was shown that wheat
cultivars having high RWC, are more tolerant to drought stress. The
rate of RWC in plants with high water stress tolerance is high relative
to susceptible plants/cultivars. It is therefore expected that plants
having higher yields under drought stress should exhibit high RWC
[82]. In another study by Soltys-Kalina et al. [8] subjecting Solanum
tuberosum plants to drought for 3 weeks significantly decreased leaf
water content of the 18 cultivars. The study further correlated RWC
with relative yield decrease and found low but statistically significant
correlation (R=-0.18) [8]. Pirzad et al. found no significant differences
in leaf RWC in Matricaria chamomilla L. [47] signifying high water
maintenance under both low and high-water conditions, which may be
indicative of water deficit stress tolerance in the species. Jungklang et
al. [78] in their study found a significant decline in leaf RWC in
Curcuma alismatifolia leaves at 30 days after withholding water.
However, under drought conditions, the study established that RWC
was enhanced when plants were treated with a growth retardant PBZ.
It is apparent, therefore, that leaf RWC examines water balance in
plants. More studies to elucidate growth factors and traits that enhance
maintenance of leaf RWC are of gross need in achieving drought
tolerance.

Proline Accumulation
Some of the most important responses of plants against drought

stress are associated with the accumulation of minerals [88] and
enhanced synthesis of osmoprotectants, which are part of normal
metabolism. Accumulation of these compounds helps the stressed cells
in water retention [89] and in the maintenance of the structural
integrity of the cell membranes. However, types of osmoprotectant
metabolites and their relative contribution in lowering the osmotic
potential differ greatly among plant species [90,91]. This suggests that
different plant species may employ different drought tolerance
strategies and the same case is hypothesized for cultivars/varieties. It
has also been reported, however that many metabolites are conserved

among species [91]. Metabolic adjustments in response to the adverse
environmental conditions highlight pools of metabolites that play
important roles in metabolism and physiology and may indicate which
pathways perturbed by the stress [90]. Such metabolites include glycine
betaine, trehalose, taurine and amino acids, principally Proline [42].
Proline is by far the most studied osmoprotectant. A large body of data
suggests a positive correlation between Proline accumulation and plant
stress [92]. In a study by Jungklang et al., Proline content was
significantly high in Curcuma alismatifolia plants exposed to water
stress at 30 days after imposing the stress [78]. Similar results were also
obtained by Jungklang & Saengnil [78], Witt et al. and Bowne et al.
[42]. Proline has been well documented as an osmotic regulator
helping in reduction of osmotic damage [93,94]. It is further
hypothesized that accumulation of Proline in leaves could possibly
play a protection role aside from osmoregulation during water stress
[78].

Figure 4: An overall response to drought, summarizing stomatal
and non-stomatal responses.

The wide use in nature of Proline as a stress adaptor molecule attests
to its prime plausible role in stress response. Indeed, accumulation of
proline and other osmoprotectant compounds in plant cells depict
plants inherent tolerant mechanisms to harmful water deficit. Hyper
release of proline under drought stress is suggested to accrue from the
increased expression level of a critical gene in proline biosynthetic
pathway, pyrroline-5-carboxylate synthetase [95,96] and the inhibition
of proline dehydrogenase, a key enzyme in proline degradation. While
acknowledging this knowledge, it is apparent however, that a majority
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of tomato cultivars and landraces remain unstudied in this regard.
Moreover, studies have largely skewed towards proline, and less
attention has been made to other potential osmoprotectants like
glycine betaine, taurine and trehalose, which have demonstrated a
critical role under other abiotic stresses like heat stress, hence a need
for more studies on their plausible role in heat stress adaptation under
water stress.

In conclusion, constitutive whole-plant traits contribute chiefly in
plant water relations and plant dehydration avoidance under stress.
Due to the critical water problems in many tropics, moisture is not
sufficient to meet water demands for crops. Tomatoes demand high
levels of moisture owing to their succulent nature. It is therefore
desirable to breed tomato varieties that are able to withstand limited
moisture levels. Selection efficiency for such breeding programs,
should be holistic, integrated and comprehensive. It must consider
manipulation of plant’s physiological and biochemical pathways and
traits that explicitly and implicitly contribute to water stress tolerance
(Figure 4), than focusing on yield parameters alone as has been a
common case.
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