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Abstract

IL-15 is an immune-enhancing cytokine belonging to the IL-2 family, which supports survival, proliferation and
functional activities of NK, NK-T, T and B cells. Moreover, IL-15 may support the growth and survival of different
lymphoid malignancies, suggesting that targeting of the IL-15/IL-15R system or its downstream signaling cascade
may result in therapeutic effects, in these tumors. On the other hand, given its immune-enhancing activities IL-15
has been considered a good candidate for cancer immunotherapy. Indeed, IL-15 or IL-15 super agonists have
shown anti-tumor activity in several animal tumor models either alone or combined with other immune-enhancing
molecules. Therefore, clinical trials of IL-15 or IL-15 super-agonists are ongoing in different cancers. Here we will
summarize the biological features of the IL-15/IL-15R system and discuss its duality in tumor biology and the
potential applications of IL-15 agonists and antagonists in cancer.

Keywords: IL-15; IL-15Ra; Cancer immunotherapy; Lymphoid
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Introduction
IL-15 belongs to a family of cytokines that bind to receptor (R)

complexes sharing the common γ chain (γc or CD132), which is
essential for signaling through the associated tyrosine kinase JAK3.
Besides IL-15, this family also comprises IL-2, IL-4, IL-7, IL-9, and
IL-21, which regulate the development and functions of lymphoid cells
[1,2]. IL-4, IL-7, IL-9 and IL-21 receptor complexes consist of a
cytokine-specific α chain and the γc, while IL-2 and IL-15, besides
having specific α chains, also share the usage of a promiscuous IL-2/
IL-15Rβ (CD122) chain [3,4]. Therefore, both IL-2 and IL-15 signal
through JAK1/3 and STAT3/5 pathways and mediate the proliferation
and differentiation of NK, NK-T and activated T and B cells, in vitro.
The IL-2/IL-15Rβ/γc is constitutively expressed on resting NK cells and
on T cell subsets, which can directly respond to IL-2 or IL-15 and
acquire potent cytolytic activity against cancer cells [5]. This effect is
related to the induction of granzyme B and perforin expression [6]. In
addition, IL-15 cooperates with IL-12 to induce secretion of different
cytokines such as IFN-γ, TNF-α, and MIP-1α in NK cells [7].

In spite of a functional overlap in vitro, IL-2 and IL-15 have specific
functions in vivo, as demonstrated by the study of KO models. In
particular, IL-15 or IL-15Rα are essential for the development and
survival of NK, NK-T and specific T cell subsets [8,9]. Differently, IL-2
and IL-2Rα have a specific role in immune regulation and their
deficiency results in lympho proliferation and autoimmunity [10,11].
These phenotypes may reflect immune-regulatory activities of IL-2,
including the induction of the activation-induced cell death of T cells
and the expansion and fitness of CD4+CD25 high regulatory T cells.
The specific functions of the two cytokines in vivo are related, at least
in part, to their differential expression and regulation [12]. Indeed,
IL-2 is specifically produced by activated T lymphocytes during the
immune response, while IL-15 is expressed in different cell types,
including monocytes, macrophages, DCs, stromal and some epithelial

cells, in response to different signals [3,12]. Moreover, the IL-2Rα and
IL-15Rα are also differentially regulated, are present in different cell
types, and have different functional activities and affinities for their
ligands [12,13].

Biology of the IL-15/IL-15R system
The human IL15 gene consists of six coding exons and maps to

chromosome 4q31. The study of an IL-15 reporter transgenic mouse
showed that IL15 promoter activity is largely limited to myeloid
lineages while lymphoid cells express very low IL15 promoter activity.
Hematopoietic stem cells show high levels of IL-15 expression, which is
down-regulated during T cell differentiation in a stepwise and Notch-
dependent fashion [14]. Different transcription factors, including NF-
kB, IRF-E, Myb, and INF2 mediate transcriptional activation of the
IL-15 gene [15-17]. In addition to transcriptional control, the IL-15
expression is also regulated at the level of mRNA splicing and
translation and protein intracellular trafficking [12,17]. Alternative
splicing of the IL-15 transcript results in the generation of two mRNA
isoforms encoding for IL-15 proteins bearing either a short (SSP) or a
long signal peptide (LSP) [18]. The different hydrophobicity of the two
signal peptides dictates differential intracellular trafficking, as the LSP-
IL-15 enters the ER and can be exported outside the cell, while the
SSP-IL-15 localizes to the cytoplasm and nucleus [19,20]. Finally, IL-15
mRNA translation is limited by the presence of multiple AUG codons
in the 3’UTR, upstream the initiation codon [21]. These mechanisms
greatly limit IL-15 secretion in cells expressing IL-15 mRNA, and IL-15
release or surface exposure occurs only in activated monocytes,
macrophages, DCs and stromal cells.

The human Il15RA consists of seven exons, and alternative mRNA
splicing may result in eight molecular IL-15Rα isoforms with different
extra- or intracellular domains [13]. Full-length isoforms consist of an
extracellular portion containing the Sushi (i.e. IL-15-binding) domain,
a trans-membrane domain, and an intracellular tail. Different from
IL-2Rα, the isolated IL-15α chain is a high-affinity receptor with a KD
<10-11M. The high affinity is an important property of the IL-15Rα,
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which can bind IL-15 at the surface of myeloid cells, in the absence of
the IL-2/IL-15Rβ/γc dimers. In this way, activated DCs or macrophages
can trans-present surface IL-15Rα/IL-15 complexes to IL-2/IL-15Rβ/γc
+ lymphocytes, through a “juxtacrine” mechanism involving cell-to-cell
contacts [22-24] (Figure 1).

Figure 1: IL-15 transpresentation and IL-15 superagonists. IL-15
can act on target cells by several mechanisms: i) soluble IL-15 may
act on neighbor cells expressing high affinity IL-15Rα/IL-2/
IL-15Rα,β,γc complexes; ii) IL-15 bound to surface 15Rα chain is
transpresented to lymphoid cells expressing IL-2Rβ/γc complex
through cell-to-cell contact; iii) soluble IL-15/IL-15Ra complexes
activate IL-2R β/γc complexes. Superagonists consist of IL-15 bound
to IL-15R β/γc -sushi domain (RLI) or by a highly active IL-15
mutant (N72D) in complex with IL-15R-Sushi/IgFc (ALT-803).

Several pieces of evidence support the concept that IL-15 trans-
presentation is the most important mechanism of action of IL-15. The
IL-2/IL-15Rβ/γc dimer present on T or NK cells has a low/intermediate
affinity for free IL-15, and its activation requires high IL-15
concentrations, which are not found in vivo. The study of KO models
revealed an essential role of IL-15Rα in IL-15 biology. Both IL-15- and
IL-15Rα-deficient mice displayed a defective development of NK, NK-
T and intestinal intraepithelial CD8+ T cells [8,9,25]. Other studies
showed that IL-15 mediates the commitment of hematopoietic
progenitors of the bone marrow, lymphoid organs and cord blood to
the NK cell lineage [26-29], and IL-15 trans-presentation is essential
for NK cell development in vivo [30]. T or NK cell responses require
the presence of IL-15Rα on interacting activated myeloid cells co-
expressing IL-15, whereas expression of IL-15Rα on T or NK cells is
not necessary [25,30]. Trans-presentation of IL-15 also mediates NK
cell survival, as NK cells from wild-type mice showed reduced survival
when implanted into Il15ra-/- mice [9]. Indeed, IL-15 is an important
survival factor for NK and T cells in peripheral tissues through Erk-1/2
and PI-3 kinase-mediated inhibition of the apoptosis-inducing
molecule Bim, and up-regulation of the anti-apoptotic molecule Mcl-1
[31]. In addition, reduced CD8+CD44 high memory T cells were
reported in Il15ra-/- mice, indicating a role for IL-15Rα in the
development of memory T cells. Again the presence of IL-15Rα on
CD8+ T cells is dispensable for T cell memory differentiation,
indicating a prominent role for trans-presentation [32]. Membrane-
bound IL-15 is an important mediator of the cross-talk between DCs

and NK cells in secondary lymphoid organs [33]. DCs produce IL-15
in response to CD40 signalling and trans-present it to NK cells
mediating their activation and proliferation [34]. On the other hand,
IFN-γ produced by NK cells enhances surface IL-15 expression on the
DCs [35]. Also, TLR agonists trigger DCs to produce IFN-type I,
which induce IL-15 trans-presentation. Induction of IL-15 expression
on DCs is relevant for adaptive immunity against pathogens [36], as it
supports the proliferation of memory CD45RO+ CD4+ and CD8+ T
cells and naive CD45RO-CD8+ T cells.

The IL-15Rα/IL-15 complex may activate IL-2Rβ/γc
+ T or NK cells

not only as membrane-bound form but also as soluble complex (Figure
1). An IL-15RαΔ3 soluble isoform generates functional complexes with
IL-15, which exert potent biological activity on lymphoid cells [37].
Type I IFNs, viral infection, and CD40 stimulation induce the release
of soluble IL-15Rα/IL-15 complexes, which may enhance immune
responses, in vivo [38]. The demonstration that IL-15/IL-15Ra-Sushi
domain complexes strongly stimulate lymphoid cells expressing IL-2/
IL-15Rβ/γc provided the basis for the generation of new IL-15
superagonists [39].

IL-15Rα may also act as a signaling molecule in myeloid cells, as
delivery of an IL15 gene in Rag2-/-γc-/- mice increased the number of
myeloid cells in the spleen and IL-15 induced RANTES production
through activation of JNK and NF-ҡB, in these cells [40].

Besides IL-15Rα-bound IL-15, alternative membrane forms of GPI-
linked or trans-membrane IL-15 have been described on human
monocytes [41]. The trans-membrane IL-15 may deliver signals by
cell-to-cell contacts to lymphoid cells and could also mediate a reverse
signal to monocytes through the Rho-GTPase Rac3 and the MAPK
pathway, resulting in increased adhesion and IL-8 secretion [42].

Pro-tumor effects of IL-15
IL-15 stimulates growth and survival of normal T, B and NK cells,

and may have similar effects on their neoplastic cellular counterparts.
Indeed, several pieces of evidence indicate that IL-15 supports
proliferation and survival of different types of neoplastic lymphoid
cells, including those from Large Granular Lymphocyte Leukemia
(LGLL) [43-45], B-Chronic Lymphocytic Leukemia (B-CLL) [46-48],
Follicular Lymphoma (FL) [49] Hodgkin’s Lymphoma (HL) [50]
Cutaneous T cell Lymphoma (CTC) [51], Multiple Myeloma (MM)
[52], Enteropathy-Associated T cell Lymphoma (EATL) [53,54], and
Adult T cell Leukemia (ATL) [55].

An early study showed that IL-15 mediates the proliferation of T- or
NK-type LGLL cells, which express IL-15Rα and IL-2/IL-15Rβ/γc
suggesting that it may act as a growth factor in these
lymphoproliferative disorders [44]. Also, the study of IL-15-transgenic
mice showed that chronic hyper-expression of IL-15 in vivo may result
in the development of LGLL, sharing similarities with the human
disease [43]. Further studies confirmed that chronically high levels of
IL-15 alone are sufficient to drive the neoplastic transformation of
normal LGL in the mouse, through induction of JAK1/3 and STAT3/5
signalling [45]. The role of STAT3 in LGLL genesis was also indicated
by the high frequency (30-40%) of STAT3 mutations, involving the
SH2 domain in human T and NK-LGLL [56]. Chronic activation of the
STAT3 pathway mediates high Myc expression resulting in: i)
overexpression of Aurora kinase A and B, which mediate amplification
of centrosomes and chromosome instability; ii) down regulation of
mir-29b, which results in enhanced expression of DNA methyl
transferases and epigenetic silencing of oncosuppressor genes [45].
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Antibodies blocking the IL-2Rβ/γccomplex such as the Mikβ1
antibody inhibit the effects of IL-15 on LGL proliferation, in vitro [44].
However, clinical studies of murine or humanized Mikβ1antibody
showed no significant clinical benefit in LGLL patients [57], possibly
suggesting the involvement of other factors and/or the loss of IL-15-
dependency during progression.

An initial report indicated that IL-15 supports B-CLL proliferation
in vitro through the IL-2R [47]. Further studies showed that IL-15
triggers STAT3/5 and ERK1/2 activation, mediating proliferation and
survival of B-CLL cells in vitro and that stimulation via CD40L
increased sensitivity to IL-15 effects [46]. B-CLL cells express TLR9,
which upon ligand engagement drives their apoptosis. However, a
recent report showed that IL-15 inhibits TLR-9-induced apoptosis and
that TLR9 and IL-15 rather co-stimulate B-CLL clonal expansion. B-
CLL cells with chromosomal anomalies showed stronger proliferative
responses, which correlated with reduced patient survival. In addition,
the presence of IL-15-producing cells and apoptotic cells near B-CLL
pseudofollicles in the spleen, suggest that DNA and IL-15 may co-
stimulate B-CLL growth in secondary lymphoid organs [48]. Also, FL
cells proliferate in response to IL-15 trans-presented by macrophages
and CD40L signaling further increases this response [49]. Collectively,
these studies indicate that IL-15 may cooperate with other stimuli such
as TLR and CD40L to support neoplastic B cell growth in the
microenvironment of lymphoid organs.

The IL-15/IL-15R system mediates mitogenic and anti-apoptotic
signals in Hodgkin’s and Reed Stenberg cells through the
phosphorylation of ERK1/2 and STAT5, and enhanced the expression
of inflammatory factors including IL-1α, IL-6, IL-9, IL-12β, and CCL3
[50].

In ATL, an autocrine IL-15 loop supports the proliferation of
neoplastic cells. In this disease the human HTLV-1 transactivating
protein TAX drives IL-15 and IL-15Rα over-expression, thus
generating an autocrine IL-15 loop that may play a role in disease
development and progression [12,16,17].

IL-15 has also been involved in CTC, where the skin shows
overexpression of IL-15, which could mediate paracrine effects on CTC
cells. Since IL-15 can act as a chemoattractant for T cells ( ), it is
conceivable that it may be involved in the tropism of CTC cells for the
skin. At advanced stages also CTC cells acquire the ability to produce
autocrine IL-15, which can render cells less dependent on the support
provided by the skin environment [51]. Similarly, autocrine IL-15
expression by MM cells supports their proliferation and survival,
protecting them from spontaneous or activation-induced apoptosis
and rendering them independent from the microenvironment [52].

IL-15, which is highly expressed in the gut of Celiac Disease (CD)
patients, may also play a role in some complications of this disease,
including Refractory CD and EATL. Indeed, in type II Refractory CD
there is an accumulation of abnormal intraepithelial lymphocytes with
a CD3- and CD8-negative phenotype and clonal rearrangements of the
TCR, which are considered a low-grade intraepithelial lymphoma [53].
Instead, EATL is a rare but aggressive T cell lymphoma with
inflammatory features. It is likely that chronic antigenic stimulation
may act in concert with IL-15 to support the expansion of
intraepithelial lymphocytes, a first step in the development of
oligoclonal and monoclonal expansions and subsequent lymphoma
development [53].

Collectively these data support the concept that IL-15 may play an
important role as a paracrine growth factor in some lymphoid

malignancies, where agents blocking the IL-15/IL-15Rα system or its
downstream JAK/STAT3/5 pathway may provide potential therapeutic
tools.

These agents include antibodies blocking the IL-15R complex, such
as the Mikb1 antibody. This antibody showed no effects in LGLL [57],
but two studies in advanced CD (NCT01893775) and HTLV-1-
Associated Myelopathy/Tropical Spastic Paraparesis (NCT00076843)
are recruiting patients. However, in some situations IL-15 may not be
the only cytokine driving lymphoma pathogenesis. In this case, the use
of small molecule inhibitors targeting common downstream signalling
pathways of tumor supportive cytokines, such as the JAK inhibitors
ruxolitinib or tofacitinib, may represent more powerful strategies.
Indeed, CP-690,550 (tofacitinib) treatment prolonged the survival of
mice bearing a CD8+ JAK3-mutant T-ALL [58] or a CD8+ T cell
IL-15-transgenic leukemia [59]. In addition, a clinical study of
ruxolitinib in ATL is currently recruiting patients (NCT01712659) and
a very recent pilot study on nine patients with rheumatoid arthritis-
associated LGLL suggested clinical benefit [60].

Anti-tumor activities of IL-15
IL-2 has been a milestone in cancer immunotherapy, but it has a

remarkable toxicity and is active only in a limited proportion of
melanoma or renal cancer patients. The immune-enhancing activities
and data from pre-clinical studies of IL-15 suggested that it could
represent an alternative candidate [12,17,61]. Indeed, several studies in
pre-clinical models of cancer supported this hypothesis. An early study
showed that recombinant simian IL-15 has low toxicity in mice, and
inhibits the growth of lung metastases in a syngeneic sarcoma model
[62]. Also, mammary adenocarcinoma cells, genetically modified to
secrete human IL-15, showed reduced growth rates when implanted in
syngeneic mice. Vaccination with irradiated IL-15-secreting tumor
cells inhibited the growth of lung metastases of parental
adenocarcinoma. These effects were mediated by the induction of T
and NK-cell responses and by IFN-γ [63]. Another strategy is based on
the expression of IL-15 induced by an oncolytic virus, harboring the
IL15 gene, which mediates T cell responses and survival of mice
bearing colon carcinoma implants [64].

The IL-15 anti-tumor activity can be increased by co-administration
of other immune-enhancing molecules or immune checkpoint
inhibitors. For example, combined IL-12 and IL-15 gene transfer in
human small cell lung cancer cells resulted in complete loss of their
tumorigenic potential upon implant in SCID or nude mice, while each
cytokine alone had limited activity [65]. This cooperative effect was
mediated by the activation of cytotoxic macrophages. The combined
use of IL-12 gene-modified tumor cells and IL-15 administration
showed synergistic effects also in a melanoma model through
stimulation of CTLs and IFN-γ [66]. Differently, the combined use of
IL-12 and IL-15 gene transfer in breast adenocarcinoma cells induced
anti-tumor immunity through the induction of CD8+ T cells and TNF-
α, in syngeneic IFN-γ-deficient mice [67]. These data indicate that
IL-15 combined with IL-12 mediates the activation of different anti-
tumor mechanisms, in pre-clinical models.

IL-15 anti-tumor activity can also be enhanced by combination with
agonistic anti-CD40 mAbs, which enhance the expression of IL-15Rα
on DC and their ability to trans-present IL-15. Treatment of syngeneic
mice bearing colon cancer with IL-15 combined with anti-CD40 mAb
resulted in increased mice survival, compared to each treatment alone
[68].
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Other studies combined IL-15 with immune checkpoint blockers.
Indeed, IL-15 has immune stimulatory effects, but it also induces the
expression of the PD-1 inhibitory receptor on CTLs, suggesting that
IL-15 anti-tumor activity may be enhanced by simultaneous check-
point blockade. The co-treatment of colon carcinoma-bearing mice
with IL-15, anti-CTLA-4 and anti-PD-L1 mAbs produced much
stronger therapeutic effects than each treatment alone [69]. This
combined treatment showed enhanced efficacy also in a transgenic
mouse prostate cancer model [70].

A different approach to enhance IL-15 activity is based on the
generation of super-agonists consisting of IL-15 bound to part of the
extracellular domain of IL-15Rα, to mimic IL-15 trans-presentation in
a soluble form. A fusion protein, termed RLI, was constructed by
binding IL-15 to the Sushi domain of IL-15Rα via an amino acid linker
[39]. RLI was a more potent stimulator of NK and T cells than IL-15,
on a molar basis and showed prolonged half-life and stronger anti-
tumor activity than IL-15 or IL-2 in metastatic B16F10 melanoma
models [71]. Moreover, RLI reduced tumor growth and metastasis of
human colon carcinoma cells in an orthotopic nude mouse model.

A further enhancement of IL-15 anti-tumor properties was achieved
by the generation of fusion proteins consisting of RLI linked to
antibodies targeting tumor-associated antigens, such as the ganglioside
GD2 [72], the CD20 B-cell lymphoma antigen [73], or the Fibroblast
Activation Protein (FAP) of the tumor stroma [74]. These reagents
showed that antibody-targeted delivery of an IL-15-transpresenting
moiety at the tumor site is suitable to enhance IL-15 activity for tumor
therapy.

Finally, a complex of a mutant IL-15 superagonist and a dimeric
Sushi domain/Fc fusion protein termed ALT-803 showed much more
potent biologic activity on NK and T cells than IL-15, in vivo [75]. A
single dose of ALT-803 prolonged survival of syngeneic mice bearing
5T33P and MOPC-315P myeloma while IL-15 was ineffective [75].
ALT-803 promoted rapid expansion of CD8+CD44high memory T
cells in vivo, resulting in CTL- and IFN-γ-dependent immunity to re-
challenge with the same tumor cells. Similarly, ALT-803 in
combination with stereotactic surgery or anti-PD-1 antibody induced
potent antitumor immune responses resulting in prolonged survival
and complete remissions in a syngeneic glioblastoma model. These
effects required both CD4+ and CD8+ T cells and IFN-γ production
[76]. Moreover, ALT-803 augmented ADCC activity and IFN-γ
secretion by human NK cells targeted by anti-CD20 mAbs against B-
cell lymphoma cells. The combination of ALT-803 and anti-CD20 mAb
significantly reduced mouse B cell lymphoma growth and increased
survival [77].

Another report showed that IL-15 may directly act on a peculiar
population of human CD105+ renal cancer stem cells (CSCs) in vitro.
These are cell populations resistant to conventional therapy, capable of
self-renewal and driving tumorigenesis and relapses. IL-15 mediated
epithelial differentiation of CD105+ renal CSCs, which lose their stem
cell characteristics, and acquire epithelial markers and the capability to
self-produce IL-15 [78].

All these studies exploited the anti-tumor activity of IL-15 in
various tumor models. Differently a recent report addressed the role of
endogenous IL-15 in inflammation-induced colon cancer [79]. Il15-/-
but not Il15rα-/- mice showed higher tumor incidence and increased
colon weight than wild-type mice. Gene expression analysis showed
up-regulation of pro-inflammatory cytokines involved in progression,
such as IL-1β, IL-22, IL-23, Cxcl5, and Spp1 in tissues from Il15-/-

mice [79]. Altogether, these findings suggest that IL-15 signaling via
low-affinity IL-2/IL-15Rβ/γc suppresses colon carcinogenesis through
induction of antitumor immune-surveillance and modulation of the
tumor-associated inflammation.

A TAX-LUC mouse model of ATL allows to study lymphomagenesis
by transgenic expression of HTLV-1 Tax, which drives the
development of luciferase expressing lymphomas. As IL-15 is an
autocrine factor in HTLV-1 adult T cell leukemia [16], the role of IL-15
in lymphomagenesis was studied in IL-15 TAX-LUC mice.
Unexpectedly, the study of this model showed increased
lymphomagenesis and mortality, indicating that IL-15 is not strictly
required for the development of Tax-mediated lymphomas, whereas
IL-15 seems involved in anti-lymphoma immune surveillance.
Lymphomas developing in the absence of IL-15 showed a significant
increase in IL-1α and IL-1α-regulated cytokine expression, suggestive
of a lymphoma-promoting role of these cytokines, in the absence of
IL-15 [80].

In view of the anti-tumor effects of IL-15 in preclinical models,
recombinant human IL-15 was further developed at clinical grade and
tested for toxicity in rhesus macaques using different schedules [81,82].
IL-15 was biologically active particularly in the i.v. settings, as it
increased circulating NK cells and central and effector memory CD8+

T cells. An initial phase I clinical trial of IL-15 was performed in
refractory metastatic renal cancer and/or melanoma, which are
sensitive to IL-2-based immunotherapy. In principle, the use of IL-15
may better support effector memory T cell survival and functions than
IL-2 and avoid the induction of activation-induced cell death and the
stimulatory activity on Treg cells functions and fitness, which are
typical of IL-2 [83]. In this clinical study IL-15 showed toxicity,
including grade 3 fever, hypotension, thrombocytopenia, and increased
transaminase levels, at 3 or 1 µg/kg/day for 12 days dose levels. The
maximal tolerated dose was established at 0.3 µg/kg/day. After an
initial rapid efflux of NK and memory CD8 T cells from the blood
within minutes of IL-15 administration, influx and hyperproliferation
resulted in 10-fold expansions of NK cells. Serum levels of multiple
inflammatory cytokines, including IFN-g and IL-6 increased up to 50-
fold, and may be involved in some toxic effects. No objective responses
were observed and disease stabilization was recorded as best response
[84]. A phase I/II study of i.v. IL-15 administration following a non-
myeloablative lymphocyte depleting chemotherapy and autologous
tumor-infiltrating lymphocytes transfer in metastatic melanoma was
recently terminated due to autoimmune toxicity (NCT01369888).
Other trials of IL-15 using different schedules are ongoing, e.g. a phase
I/II study of s.c. rIL-15 in adults with advanced cancers
(NCT01727076). In addition, other trials will address the use of IL-15
super agonists in cancer patients. A clinical study of s.c. hetIL-15, are
combinant heterodimer of IL15/sIL-15Rα, in adults with metastatic
cancers (NCT02452268) is recruiting patients. Two other studies of the
IL-15 super agonist ALT-803 have been initiated in patients with
advanced solid tumors [NCT01946789] and in relapses of hematologic
malignancy after allogeneic stem-cell transplantation [NCT01885897].
It is hoped that ongoing studies will unravel the potential and the best
formulation and schedules of IL-15-based immunotherapies in order
to achieve clinical efficacy in cancer patients.

Conclusion
IL-15 is a pleiotropic cytokine, which is essential for NK cell

development and promotes proliferation, differentiation and functions
of T, B and NK cells. These effects are not limited to normal lymphoid
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cells, as IL-15 can promote the growth of several types of malignant
lymphoid cells, in vitro. Also, IL-15-transgenic mice develop
spontaneous T or NK-type LGL leukaemias, supporting an in vivo role
of IL-15 in leukaemia genesis. Therefore, the use of IL-15 for the
treatment of lymphoid tumors should be avoided and, instead, the use
of antibodies blocking the IL-15/IL-15R system or inhibitors targeting
its downstream JAK/STAT signalling pathway is currently investigated.
In this context, preliminary findings suggest that the JAK inhibitor
tofacitinib has clinical activity in rheumatoid arthritis-associated
LGLL.

On the other hand, the ability of IL-15 to stimulate both NK and T
cell responses, and its well-documented anti-tumor activity in
preclinical models, support the development of clinical studies of IL-15
in cancer. In addition, IL-15 showed acceptable toxicity profiles in
mouse and primate models. Therefore, clinical studies of IL-15 or
IL-15 superagonists, consisting of IL-15 linked to IL-15Rα portions,
have been initiated. Also, studies combining IL-15 with adoptive
transfer of T or NK cells are ongoing in cancer patients. However, a
study combining IL-15 and TILs was recently terminated due to
autoimmune toxicity, suggesting that IL-15’s immune enhancing
activity is powerful and may result in exaggerated reactions. The
ongoing and future clinical studies will elucidate the potential of IL-15
or of its superagonists in immunotherapy and provide indications on
the best treatment schedules. Finally, preclinical models have shown
that the combination of IL-15 with other immune enhancing
cytokines, CD40-agonists, or immune checkpoint blockers may result
in cooperative anti-tumor effects, supporting the development of
combinational therapies in clinical settings.
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