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Abstract 
The biodegradation of BTEX pollutants is often facilitated by both aerobic and anaerobic bacteria in the 

environment. Developing strategies to enable a rapid characterisation of related microbial populations is 
of importance to many industries, including the petrochemical industry. Here we use a qPCR assay to show 
that dynamic changes in key catabolic genes, from aerobic and facultative anaerobic bacteria involved in the 
breakdown of benzoate and toluene through microcosm studies, can be linked to the aerobic or anaerobic nature 
of these microcosms. This approach may prove useful in further studies of the biodegradation of pollutants by 
eubacteria in situ.
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Introduction
Aromatic compounds are one of the most prevalent types of 

compound present within our environment [1]. The BTEX family of 
aromatic compounds are of particular environmental importance due 
to their widespread occurrence, persistence in nature [2], potential 
to cause adverse human health effects, safety hazards, ecological and 
aesthetic impacts [3].

Aerobic pathways of aromatic hydrocarbon degradation employ 
oxygen as a terminal electron acceptor, and mono- and dioxygenase 
enzymes, to cleave the benzene ring which results in a loss of aromaticity 
[4]. Biodegradation pathways of aromatic hydrocarbons have been 
intensively investigated, much is known about the genes involved [2] 
and many related monooxygenase and dioxygenase genes have been 
characterised. Toluene dioxygenase, studied in detail by Gibson and 
colleagues [5] is an especially good illustration of a gene involved in 
the breakdown of one of the BTEX compounds. However, it is also the 
case that some microorganisms do not possess the toluene dioxygenase 
gene and instead transform toluene to benzoate, prior to aromatic ring 
cleavage by benzoate dioxygenase [6]. 

Under anaerobic conditions, BTEX compounds appear to be 
processed through the central benzoyl CoA reductase pathway-for a 
review readers are directed toward references [1] and [7]. Most BTEX 
degradation appears to be facilitated by facultative anaerobes, such 
as Thauera spp and Azoarcus spp [1] that functionalise the aromatic 
substrate via formation of a benzoyl CoA derivative before further ring 
degradation using reductive biochemistry [8]. 

Microcosms are widely used to both facilitate enrichment of 
pure cultures from environmental samples and allow studies of 
complex communities and their interactions with specific substrates 
to be performed. Previous studies have focused upon qualitative PCR 
approaches using catabolic genes as indicators of microbial degradation 
of compounds [9] or qPCR looking at one catabolic gene [10,11]. 

One key question that has not been extensively addressed in 
microcosm studies relates to the changes that occur in catabolic gene 
profiles in response to the addition of aromatic hydrocarbon substrates. 
If microcosms are to be used as a model for biodegradation in situ we 
need to provide evidence that such a dynamic change actually occurs. 

As previously noted aerobic and anaerobic genes used by eubacteria 

for aromatic hydrocarbon degradation are very different. Therefore, 
the aim of this study was to monitor catabolic gene levels within both 
aerobic and anaerobic microcosms through qPCR. Any relationship 
linking gene profiles to the presence or absence of oxygen within 
degrading microbial communities could lead to direct inferences 
being made using a similar approach to microbial communities in 
environmental samples.

Materials and Methods
Microcosm construction

Benzoate degrading microcosms were established under both 
aerobic and anaerobic conditions using an inoculum of anaerobic 
river sediment (obtained from the River Lagan in Belfast, Northern 
Ireland) whilst toluene microcosms were set up using sediment from 
a petrochemical site contaminated with BTEX based in the UK. In the 
latter case, the inoculum was sediment from core material recovered at 
a depth of 6 metres below ground and stored in an air-tight container 
under nitrogen at 3°C prior to use.

Anaerobic microcosms were established inside a nitrogen glove 
box (Cole-Parmer). The box was flushed with nitrogen and media, 
vials, and soil were placed within the housing for at least 24 hours prior 
to microcosm construction to allow the removal of dissolved oxygen. 
Inoculation of media, addition of resazurin and sealing of vials was 
carried out within the glove box. 

Anaerobic and aerobic microcosms were constructed in 6 ml and 
100 ml headspace vials (Supelco), respectively. 1 g of sediment was 
added to both microcosm types together with 4 ml of minimal salts 
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media prepared as previously described [12]. Resazurin was added to 
the media at a concentration of 0.01 wt%, providing visual confirmation 
that all active anaerobic microcosms became anoxic within the first 
24 hours of incubation. Control microcosms were set up exactly as 
described above followed by autoclaving at 15 psi and 121°C for 15 
minutes prior to incubation

In total two experiments were constructed to monitor the 
degradation of benzoate (experiment 1) and toluene (experiment 2) 
under both aerobic and anaerobic conditions. In total 4 microcosm 
sets were constructed, in triplicate, comprising of :- (a) river sediment 
with benzoate as a sole carbon source, at a final concentration of 4 
mM, incubated under aerobic conditions, (b) river sediment with 
benzoate as a sole carbon source, at a final concentration of 4 mM, 
incubated under anaerobic conditions (experiment 1) and, (c) BTEX 
contaminated sediment with toluene as a sole carbon source, at a 
final concentration of 1 mM, incubated under aerobic conditions, (d) 
BTEX contaminated sediment with toluene as a sole carbon source, at 
a final concentration of 1 mM, incubated under anaerobic conditions 
(experiment 2). In each case incubations were carried out at 30°C.

Chemical analysis

Benzoate degradation was monitored by reverse phase HPLC as 
previously described [13]. Toluene degradation was monitored by GC/
MS (Agilent) via headspace analysis where samples were injected onto 
a 105 m × 0.530 mm column (Agilent) and samples were heated to 
120°C for 0.5 min followed by a 3°C/min ramp to 140°C and finally a 
25°C/min ramp to 250°C holding until completion.

Molecular biology techniques

DNA extraction was carried out, in triplicate, as previously 
described using bead beating combined with phenol/chloroform 
extraction [14]. Total microbial DNA was quantified by UV absorption 
at 260 nm [15]. Primer pair BZAQ4F/R [16] were used to amplify a 
484bp fragment from the, α subunit of the bcr gene. The bcr products 
generated were used to prepare standards for use in qPCR assays with 
primer BZAQ4F and PFR1 (5`TCCTGMCCGCCSATGTCSAG`3) 
[17]. Primer PFR1 was designed through multiple sequence alignments 
(ClustalW-EBI) of bcr α subunits present in T. aromatica, R. palustris, 
A. evansii and M. magneticum and used to target a small section of 
the α subunit of the bcr gene for use in qPCR studies. For bdo assays 
primer pair BDOf and BDOr was used as described previously [18]. 
All qPCR standards and reactions were performed as described in our 
previous work [17] using an Opticon 3 real-time PCR thermo cycler 
(Biorad) coupled with Maxima SYBR Green Master Mix (Fermentas) 
fluorescent technology.

DNA sequencing was performed by DNA Sequencing & Services 
(MRCPPU, College of Life Sciences, University of Dundee, Scotland, 
www.dnaseq.co.uk) using Applied Bio systems Big-Dye Ver 3.1 
chemistry on an Applied Bio systems model 3730 automated capillary 
DNA sequences.

Results
Experiment 1-microbial led degradation of benzoate

In the aerobic, river sediment, microcosm studies complete 
degradation of benzoate occurred within 3 days of experiment initiation 
(from an initial concentration of 4 mM). In contrast to this ~20% 
of benzoate remained in the corresponding anaerobic microcosms 
following incubation for 14 days (Table 1) upon which point the 
experiment was terminated. Heat killed controls, maintained ≥90% 

of the initial benzoate added to microcosms under both aerobic and 
anaerobic conditions. Estimated degradation rates of carbon sources in 
these microcosms were as follows: 

Aerobic benzoate-1.30 ± 0.12 mM.d-1; and

Anaerobic benzoate -0.23 mM ± 0.02.d-1

Following incubation both the aerobic and anaerobic microcosms 
were subjected to DNA extraction followed by further analysis of 
total DNA. It was observed that qPCR analysis on DNA isolated from 
benzoate microcosms (Figure 1) indicated that total bcr copies were 
higher following incubation under anaerobic conditions (5.62 × 105 
± 3.88 × 104) in comparison to incubation under aerobic conditions 
(3.26 × 105 ± 1.9 × 104). In contrast to this observation bdo copies were 
lower under anaerobic conditions (1.25 × 105 ± 1.22 × 104) compared 
to incubations under aerobic conditions (2.81 × 105 ± 2.23 × 104). Thus 
differences in gene abundances were clearly influenced by the aerobic/
anaerobic conditions of incubation as the same starting inoculum was 
used for both aerobic and anaerobic microcosms.

Experiment 2-Microbial led degradation of Toluene

In the aerobic, petroleum site sediment, microcosms toluene was 
completely degraded in under 3 days. In the corresponding anaerobic 
microcosms ~20% of toluene remained after 6 days (Table 1). In the 
heat sterilised controls ≥80% of the toluene added to the microcosms 
remained at the end of the test period under both aerobic and anaerobic 
conditions. Estimated degradation rates of toluene were determined as 
follows:-

Aerobic toluene-0.40 ± 0.00 mM.d-1; and,

Anaerobic, toluene-0.13 ± 0.05 mM.d-1 

Further qPCR analysis on DNA isolated from toluene microcosms 
(Figure 2) indicated that bcr copies were higher (1.52 × 105 ± 6.2 × 
103) following incubation under anaerobic conditions compared to 
incubation under aerobic conditions (9.3 × 104 ± 3.2 × 103). In contrast 
the bdo copies were lower following incubation under anaerobic 
conditions (1.32 × 105 ± 1.65 × 104) compared to aerobic conditions 
(1.64 × 105 ± 1.08 × 104). In both experiments measurements were 
made based upon triplicate microcosms. Efficiency of qPCR reactions 
ranged from101-107% falling within the acceptable range of 90-110% 
[19]. 

PCR product sequencing

The nature of the qPCR Products was confirmed through gel 
electrophoresis and melting curve analysis as described previously 
[20]. Products were cloned and sequenced to confirm their identity. In 
each case 20 plasmids were analysed and found to contain inserts of the 

Carbon source Benzoate Toluene
microcosm¹ microcosm² microcosm¹ microcosm²

Time Point 0 
Conc. mM

4 4 1 1

Time Point 1 
Conc. mM

3.824 ± 0.05 2.3 ± 0.142 0.98 ± 0.16 0.435 ± 0.1

Time Point 2 
Conc. mM 0.004 ± 0.003 0.92 ± 0.28 0 ± 0 0.135 ± 0.06

1Indicates aerobic microcosms
2Indicates anaerobic microcosms

Table 1: Degradation table indicating the removal of benzoate and toluene under 
aerobic and anaerobic conditions at analysis time points, as described in text.
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correct size, 4 of which were randomly picked for sequence analysis. 
Sequencing indicated that bcr genes obtained from anaerobic benzoate 
microcosms, using primer pair PFF1/R1, exhibited similarities to 
Thauera spp (1 sequence), Geobacter spp (2 sequences) and Alkaliphilus 
spp (1 sequence) bcr genes with homologies ranging from 88-90%.

Similarly bdo genes obtained from aerobic benzoate microcosms 
shared homologies ranging from 85-87% to Acinetobacter spp (2 
sequences) and Pseudomonas spp (2 sequences) bdo genes (accession 
numbers JQ774497-JQ774500). 

Discussion
Microbial degradation rates in microcosms amended with benzoate, 

under both aerobic and anaerobic conditions, were higher than those 
rates observed in microcosms amended with toluene. This fact may well 
be a result of the toxicity of toluene towards microorganisms [21] thus 
limiting the availability of the compound to a smaller subsection of the 
overall microbial population present within the toluene microcosms. 
Unsurprisingly aerobic rates of compound degradation were observed 

Figure 1: Copy numbers of both bcr and bdo were determined within total DNA extracted from aerobic and anaerobic microcosms where benzoate was the sole 
carbon source. Results are based on the average of triplicate samples and error bars represent the standard deviation from the mean.

Figure 2: Copy numbers of both bcr and bdo were determined within total DNA extracted from aerobic and anaerobic microcosms where toluene was the sole carbon 
source. Results are based on the average of triplicate samples and error bars represent the standard deviation from the mean.
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to be higher than anaerobic rates, regardless of the aromatic compound 
tested.

The overall change in the bcr and bdo gene abundances from 
experimental start up (t zero) to experimental completion (t final) 
in both the benzoate and toluene microcosms, inoculated with 
river sediment and sediment from the petroleum site respectively, 
are documented in Table 2. In both the benzoate and toluene 
microcosms the catabolic genes tested in this study responded to the 
redox conditions of each microcosm as the degradation of the target 
compound proceeded. Under anaerobic conditions, bcr copy numbers 
increase by a larger percentage over the duration of each experiment 
relative to aerobic microcosms. In contrast, bdo copy numbers increase 
by a larger percentage in aerobic microcosms compared to their 
anaerobic counterparts. This data indicates that comparisons, through 
qPCR approaches, of the bcr and bdo catabolic genes could be used as a 
diagnostic tool to differentiate between areas of aerobic and anaerobic 
bioremediation potential in the subsurface of a polluted site. This data 
also suggests that studies centred on copy number observations of either 
bcr or bdo independently would fail to divulge information relating to 
the aerobic/anaerobic nature of a given site under investigation.

Results from this work also indicate that more bcr copies were 
detected overall within the benzoate microcosms compared to 
the toluene microcosms. This could reflect the differences in the 
types of microorganisms present in the two inocula. For example 
microorganisms present in the river sediment used in the benzoate 
microcosms may experience constantly fluctuating redox conditions as 
a result of river levels rising and dropping [22] resulting in conditions 
where facultative microorganisms, which harbour the class I type of 
bcr, may flourish. In contrast with the conditions which may occur in 
the river sediment the BTEX contaminated sediment used to construct 
the toluene microcosms may not have been exposed to oxygen at all 
for a prolonged period due to its depth and lack of aeration meaning 
a strictly anaerobic population predominated, capable of degrading 
toluene through a class II type of bcr enzyme absent from facultative 
microorganisms [23]. The primers used to detect the bcr gene in this 
study were designed to target the class I type of bcr enzyme therefore 
potentially overlooking the strictly anaerobic microorganisms present 
in both samples. Additional tests using a more definitive range of 
carbon sources coupled with other sediment types would be helpful in 
validating this hypothesis. 

The microorganisms most closely related to the sequences obtained 
from this work are well documented in terms of their ability to 
degrade aromatic hydrocarbons [24] with both Thaura spp Geobacter 

spp previously being shown to degrade aromatic compounds under 
anaerobic conditions [25,26]. 

Conclusion
The results of this work indicate that the copy number of bcr and 

bdo within microbial communities may be influenced by prevailing 
redox conditions. This, coupled with copy number changes of each 
gene, could be useful in determining whether (i) aromatic compound 
degradation is actively occurring within a given sample; and (ii) 
degradation of aromatics is occurring under aerobic or anaerobic 
conditions.

The technique could be used to provide supporting evidence for 
in situ biodegradation (natural attenuation) and also in the design of 
in situ remediation systems (e.g. involving oxygen or nitrate/sulphate 
injection).
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