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Abstract

Background: Obesity is associated with many chronic disorders such as type-2 diabetes mellitus, essential
hypertension and non-alcoholic fatty liver disease (NAFLD). High fat diet (HFD) induced obesity in rats is associated
with altered adipocytes release of several adipocytokines. Physical exercise has also been shown to have positive
effects in the prevention and attenuation of many of the obesity-related disorders, however; the mechanisms have
not been fully elucidated.

Objective: The present study was designed to examine the effect of moderate intensity exercise training on
existing cardio metabolic and hepatic complications linked to obesity including dyslipidemia, insulin resistance,
hypertension and NAFLD.

Materials and methods: Thirty healthy adult male albino rats of initial body weight 151-190 gm were included.
Rats were randomly and equally divided into 3 groups: group (1): normal diet fed group, group (II): HFD induced
obesity group in which obesity was induced by HFD for 12 weeks and group (III): HFD induced obesity group fed on
high fat diet for 12 weeks then followed by moderate intensity swimming exercise training for 8 weeks. Rats were
examined for the body weight, length, abdominal circumference (AC) and body mass index (BMI), Systolic, diastolic
& mean arterial blood pressures, heart rate, serum glucose, insulin & HOMA-IR, serum total cholesterol (TC),
triglyceride (TG), very low-density lipoprotein (VLDL), low-density lipoprotein (LDL), high-density lipoprotein (HDL) &
atherogenic index (AI), serum adiponectin, leptin, irisin, , tumor necrosis factor alpha (TNF- α), Interleukin-6 (IL-6)
malondialdehyde (MDA), superoxide dismutase (SOD), alanine aminotransferase (ALT), aspartate aminotransferase
(AST), Alkaline Phosphatase (ALP), lactate dehydrogenase (LDH) and albumin. Histopathological examination for
hepatic tissue was also evaluated.

Results: The present study revealed that HFD significantly increased final body weight, BMI, AC, Systolic,
diastolic & mean arterial blood pressures, heart rate, serum levels of glucose, insulin, TC, TG, LDL, VLDL, ALT, AST,
ALP, LDH, TNF- α, IL-6, MDA and leptin levels, in addition to HOMA-IR and atherogenic index in HFD-induced
obesity group. However, there were significant decreases in serum levels of HDL, SOD, albumin, adiponectin and
irisin levels in the same group. Histopathological changes in hepatic tissue that indicate the development of NASH
were also observed in HFD-induced obesity group. On the other hand, chronic moderate intensity swimming
exercise training significantly reversed all these manifestations even in the absence of caloric restriction.

Conclusion: moderate exercise training seems to be an effective strategy to reverse almost all risk factors of
cardiovascular diseases and NAFLD associated with metabolic syndrome.
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Introduction
Obesity is one of the serious public health problems in the world. It

is strongly associated with many chronic diseases such as dyslipidemia,
hypertension, diabetes, coronary atherosclerotic heart disease, cancer
and nonalcoholic fatty liver disease (NAFLD) [1,2].

The major effects of obesity on cardiovascular (CV) health are
mediated through the risk of metabolic syndrome (insulin-resistance,
dyslipidemia, and hypertension), such that an absence of these risk

factors in obese individuals may not be associated with increased
mortality risk [3].

The liver is a major regulator of metabolite flow in the body.
Hepatocytes remove many materials from the circulation and release
them or their products at a moderated rate. This capacity for uptake,
especially of lipids, may be of key importance to initiate steatosis [4]
which, in turn, increases the rate of mitochondrial beta-oxidation of
fatty acids and ketogenesis that can promote lipid peroxidation and
accumulation of reactive oxygen species (ROS) in the hepatocytes with
subsequent inflammatory response, which initiate nonalcoholic
steatohepatitis (NASH)/fibrosis [5].
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Moreover, Adipose tissue is not only the primary site for storage of
excess energy but it also serves as an endocrine organ capable of
synthesizing a number of biologically active compounds
(adipocytokines) that regulate the metabolic homeostasis
[6]. Dysfunction of these adipocytokine pathways has been recognized
as a key etiological factor of obesity-induced disorders [7].

Another major determinant for many obesity-induced sequelae is
the low-grade inflammation of the enlarged adipose tissue and the
persistent release of inflammatory adipocytokines such as tumor
necrosis factor-α (TNF) and interleukin-6 (IL-6), which can adversely
affect various non-adipose target tissues [8].

Both high-fat diet and lack of or declines in daily physical activity
are the most important factors for obesity development [9]. Increasing
physical activity has become an important part of a
nonpharmacological strategy to control obesity, reverse existing
cardiovascular diseases and associated risks factors linked to obesity
[3] and prevent or attenuate hepatic steatosis [10]. However, these data
do not identify the physiological or cellular mecanisms that elicit this
improvement [11]. In most clinical investigations, however, training
rehabilitation of obese patients with cardiovascular risks factors is
often associated with lifestyle changes (modified diet, smoking
cessation, etc.) and/or medications [12,13], and it is difficult to discern
the direct therapeutic contribution of exercise alone.

Noteworthy, human and rodent exercise studies have indicated that
exercise training can alter circulating adipokine concentration as well
as adipokine expression in adipose tissue. Thus, the profound changes
to white adipose tissue in response to exercise training may be part of
the mechanisms by which exercise improves whole-body metabolic
health [14]. However, the effect of exercise on adipokine levels depends
on the type and duration of exercise; hence, it is difficult to compare
and standardize the results reported by various studies [15].

The present study was designed to examine the effects of moderate
intensity swimming exercise training on cardiovascular, metabolic and
hepatic changes produced by HFD induced obesity and to demonstrate
some underlying mechanisms.

Material and Methods
This study was conducted on 30 healthy adult male albino rats of

local strain weighing 151-190 g, were obtained from the animal house
of Faculty of Veterinary Medicine- Zagazig University. Rats were kept
in steel wire cages (40 x 30 x 18 cm-5/cage) in the physiology animal
house in Faculty of Medicine, Zagazig University, under hygienic
conditions. They were fed the commercial rodent chow with free access
to water, kept at room temperature and were maintained on a natural
light/dark cycle. Rats were adapted to the new environment for one
week before the experiment going on. All investigations were
conducted in accordance with the guiding principles for the care and
use of research animals and were approved by the Institutional
Research Board.

Rats were randomly divided into three equal groups: group (I):
normal diet fed (control) group; rats were fed on normal chow diet
consisted of 5% of energy derived from fat, 18% from proteins and 77%
from carbohydrates; 3.3 kcal/g for 12 weeks [16], group (II): a high fat
diet induced obesity group; rats were fed on high fat diet consisted of
58% of energy derived from fat, 18% from protein and 24% from
carbohydrates; 5.6 kcal/g for 12 weeks [16] (Diets were obtained from
Faculty of Agriculture, Zagazig University), and group (III): a high fat

diet induced obesity followed by exercise training group; rats were fed
a high fat diet chow for 12 weeks then subjected to a moderate
intensity swimming exercise training protocol for 8 weeks.

The rats in the training group were subjected to a swimming
exercise performed one hour per day, six day per week for eight weeks
in a cylindrical tank of 80 cm high, 120 cm diameter and filled with
heated water 50 cm deep at (30-32°C). The pre-training period lasted
for three-weeks (the first week lasted only 15 min, the second week
lasted only 30 min, and the third week lasted only 45 min), and
duration was gradually increased such that the rats were able to
perform exercise for one hour per day. At the completion of exercise,
rats were towel-dried and returned to their respective cages. The
animal groups that were not trained were confined to stand in groups
of three or four in a plastic tank (120 cm diameter filled with water to a
height of 5 cm at 30-32°C) [17,18]. No deaths occurred during or after
exercise in any groups.

Anthropometric measures
Measurement of body weight: By using a digital balance (Germany)

at the start and the end of experiment.

Measurement of rat length: Taken as the distance from the nose tip
to the anus at the start and the end of experiment [19].

Calculation of Body Mass Index [BMI]: BMI=body weight (gm)/
length2 (cm2). The cutoff value of obesity is BMI more than 0.68
gm/cm2 [19].

Measurement of abdominal circumference (AC): A plastic tape was
used to measure the abdominal circumference at the largest zone of the
rat’s abdomen [20].

Measurement of systolic, diastolic & mean arterial blood
pressure (MABP) and heart rate (HR)

Systolic & diastolic blood pressures are measured in millimeters of
mercury (mm Hg) and HR measured as beat /min by non-invasive
blood pressure monitor (NIBP; 250 system, BioPAC system, INC) [21].

MABP=diastolic + (systolic-diastolic)/3

Sample collection
Blood samples were collected from retro-orbital venous plexus 48 h

after the last training to avoid immediate effects of exercise and food
was removed from the animal cages the night before [22]. Serum was
separated by centrifugation of blood at 3000 rpm for 20 minutes and
kept deep frozen at (-20°C) until used to measure the serum levels of
glucose, insulin & HOMA-IR, serum total cholesterol (TC),
triglyceride (TG), very low-density lipoprotein (VLDL), low-density
lipoprotein (LDL), high-density lipoprotein (HDL) & atherogenic
index, serum adiponectin, leptin, irisin, , tumor necrosis factor alpha
(TNF- α), interleukin-6 (IL-6), malondiadehyde (MDA), superoxide
dismutase (SOD), alanine aminotransferase (ALT), aspartate
aminotransferase (AST), Alkaline Phosphatase (ALP), lactate
dehydrogenase (LDH) and albumin. Livers were also excised and
processed for histopathological studies.

Biochemical analysis
Measurement of serum glucose and insulin: Serum glucose was

estimated as described by [23] using specific glucose kit (Bioscience,
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Egypt) and analyzed by spectrophotometers device (URIT-810, China).
Insulin was measured by enzyme amplified sensitivity immunoassay
(EASIA) as described by [24] using specific insulin kit (BioSource
Belgium) and analyzed by spectrophotometers device.

Calculation of Insulin resistance (HOMA-IR): Homeostasis model
assessment of insulin resistance (HOMA-IR) was calculated according
to the following formula [HOMA-IR = insulin (µU/mL) x glucose
(mg/dl)/405] [25].

Measurement of serum lipids profile: Total cholesterol (TC) and
triglycerides (TG) were measured by enzymatic colorimetric method
described by using specific cholesterol and triglycerides kits (Spinreact
Spain) and analyzed by spectrophotometers device. High density
lipoproteins (HDLc) was measured by precipitating reagent method
described by [23] using HDLc precipitating reagent kit (Spinreact,
Spain) and analyzed by spectrophotometers device. Low density
lipoproteins (LDLc) and very low density lipoproteins (VLDLc) were
estimated by using [26] formula:

LDLc=TC-HDLC -(TG/5) VLDLC =TG/5

Calculation of atherogenic index (AI): The atherogenic index was
calculated from the following formula: AI=Log (triglycerides/HDLc)
[27].

Measurement of serum Leptin: was measured according to the
method described by [28], using commercial ELISA kit, (Catalog
Number RAB0005, provided by Sigma-Aldrich Co).

Measurement of serum TNF-α level: was measured according to the
method described by [29], using commercial ELISA kit, (Catalog
Number RAB0480, provided by Sigma-Aldrich Co).

Measurement of serum IL-6 level: was measured according to the
method described by [30], using IL-6 ELISA Kit (Catalog Number
RAB0306 provided by Sigma-Aldrich Co).

Measurement of serum adiponectin level: was measured according
to the method described by [31] using commercial ELISA kit, (Catalog
Number RAB0005, provided by Sigma-Aldrich Co).

Measurement of serum irisin level: was measured according to the
method described by [32] using irisin ELISA kit (EK-067–16; Phoenix
Pharmaceuticals, Burlingame, CA).

Measurement of serum MDA level: was measured according to the
method described by [33], using Biodiagnostic kit (Biodiagnostic
company, Dokki, Giza, Egypt).

Measurement of serum SOD activity: was measured according to
the method described by [34], using kit provided by (Biodiagnostic
company, Dokki, Giza, Egypt).

Measurement of serum alanine aminotransferase (ALT) and
aspartate aminotransferase (AST) levels: were measured according to
the method described by [35], using rat ALT & AST enzyme-linked
immunosorbent assay kit, (Catalog Number: 2011-11-0595, Shanghai
Sunred biological technology, China).

Measurement of serum alkaline phosphatase level: was measured by
colorimetric method according to the method described by [36].

Measurement of serum lactate dehydrogenase (LDH): was measured
according to the method described by [37], using commercial kit
(Catalog Number 279 001, provided by Egyptian Company for
Biotechnology).

Measurement of serum alkaline phosphatase level: was measured
according to the method described by [36] using commercial kit
(Catalog Number 15-1711 provided by Sigma-Aldrich Co).

Measurement of serum albumin: was measured by using the
bromocresol green method according to the method described by
Stoskopf [38].

Tissue sampling and histopathological examination
Immediately after collecting blood samples, rats were killed by

decapitation after light ether anesthesia. The abdominal cavities of the
rats were opened to remove the livers. All removed livers were fixed in
10% buffered formalin solution for duration of 48-60 hour. After this,
tissue samples were processed through ethyle alchol and xylene series,
and embedded in paraffine blocks. Liver specimens were sectioned
(5µm thick), then stained with hematoxylin and eosin [39]. The slides
were examined under a light microscope by an expert pathologist in a
blinded fashion.

Statistical analysis
Results were presented as mean x ± SD for and analyzed using

version 18 SPSS program (SPSS Inc. Chicago, IL, USA). One way
Analysis of variance (ANOVA) was used followed by student- least
significant differences (LSD) test to compare statistical differences
between groups. Pearsons test was done to detect correlations between
parameters. P value less than 0.05 was considered to be significant
(Figures 1-4).

Results
The present study showed that HFD (group II) significantly

increased body weight, BMI, AC, serum glucose, insulin & HOMA-IR,
serum total cholesterol, triglyceride, LDL, VLDL & atherogenic index,
serum leptin, TNF-α, IL-6, MDA, ALT, AST, ALP, LDH. It also
significantly increased Systolic, diastolic & mean arterial blood
pressures and heart rate (p<0.001) with significant positive correlations
versus BMI., but, it significantly decreased serum albumin, HDL,
adiponectin, SOD and irisin levels (p<0.001) with significant negative
correlations versus BMI when compared to control group ( group I)
(Tables 1-4).

Whereas, chronic moderate exercise training ( group III)
significantly decreased body weight, BMI, AC, serum glucose
(P<0.001), insulin(P<0.01) & HOMA-IR, serum total cholesterol,
triglyceride, LDL, VLDL & atherogenic index, serum leptin, TNF-α,
IL-6, MDA, ALT, AST, ALP, LDH (P<0.001) and it also significantly
increased Systolic, diastolic & mean arterial blood pressures and heart
rate (P<0.001) , it significantly decreased serum albumin, adiponectin,
SOD (P<0.001), HDL and irisin levels (P<0.01) when compared to
HFD- induced obesity group ( group II) (Tables 1-4).

Parameters Group Group I Group II Group III

Initial BW (gm) ± ΣΔ 172.4 ± 8.54 166.2 ±7.31 169 ± 4.94
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P value of LSD  -- NSa NSb

Final BW (gm) ± ΣΔ 265 ± 8.273 418.5 ± 12.695 342.1 ± 12.749

P value of LSD  -- P<0.001a P<0.001a,b

Final BMI (gm/cm2) ± ΣΔ 0.54 ± 0.72 0.77 ± 0.06 0.69 ± 0.08

P value of LSD  -- P<0.001a P<0.001a, P<0.05 b

AC (cm) ± ΣΔ 15.1 ± 1.19 21.9 ± 2.07 18.2 ± 1.03

P value of LSD  -- P<0.001a P<0.001a,b

r with BMI  -- r=0.934, p<0.001  --

Table 1: Body weights, Final BMI & AC of all studied groups. a = versus group-1, b = versus group-2 and NS = non-significant (P>0.05).

Groups Parameters Group I Group III

Serum Glucose (mg/dl)

± ΣΔ 84.5 ± 10.31 10.63 ± 10.63

P value of LSD  -- P<0.001a,b

r with BMI  --  --

Serum Insulin (μIU/ml)

± ΣΔ 20.499 ± 3.38 33.949 ± 5.45

P value of LSD  -- P<0.001a , P<0.01b

r with BMI  --  --

HOMA-IR

± ΣΔ 4.285 ± 0.96 10.983 ± 2.51

P value of LSD  -- P<0.001a ,b

r with BMI  --  --

Serum Cholesterol (mg/dl)

± ΣΔ 71.78 ± 11.53 98.08 ± 6.78

P value of LSD  -- P<0.001a,b

r with BMI  --  

Serum Triglyceride (mg/dl)

± ΣΔ 70.703 ± 14.32 101.045 ± 8.61

P value of LSD  -- P<0.001a,b

r with BMI  --  

Serum HDL (mg/dl)

± ΣΔ 41.8 ± 7.15 35.35 ± 5.77

P value of LSD  -- P<0.05a, P<0.01b

r with BMI  --  --

Serum LDL (mg/dl)

± ΣΔ 15.84 ± 3.13 42.51 ± 6.003

P value of LSD  -- P<0.001a,b

r with BMI  --  --

Serum VLDL (mg/dl)

± ΣΔ 14.14 ± 2.865 20.2 ± 1.722

P value of LSD  -- P<0.01a, P<0.001b

r with BMI  --  --

Atherogenic index ± ΣΔ 0.226 ± 0.044 0.46 ± 0.087
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P value of LSD  -- P<0.001a,b

r with BMI  --  --

Table 2: Serum Glucose & Insulin, HOMA-IR, serum Cholesterol, Triglyceride, HDL, LDL, VLDL and atherogenic index of all studied groups.

Groups Parameters Group I Group II Group III

Serum leptin (ng/ml)

± ΣΔ 3.15 ± 0.53 9.86 ± 0.70 6.6 ± 1.4

P value of LSD  -- P<0.001a P<0.001a,b

r with BMI  -- r=0.963, p<0.001  --

Serum adiponectin (ng/dl)

± ΣΔ 7.32 ± 1.11 3.511 ± 0.74 5.51 ± 0.61

P value of LSD  -- P<0.001a P<0.001a,b

r with BMI  -- r= -0.928, p<0.001  --

Serum irisin (ng/ml)

± ΣΔ 17.28 ± 1.83 8.19 ± 0.84 12.17 ± 1.15

P value of LSD  -- P<0.001a P<0.001a, P<0.01b

r with BMI  -- r = -0.961, p<0.001  --

Serum TNF-α (pg/ml)

± ΣΔ 47.17 ± 3.77 63.16 ± 1.94 54.23 ± 2.06

P value of LSD  -- P<0.001a P<0.001a,b

r with BMI  -- r=0.905, p<0.001  --

Serum IL-6 (pg/ml)

± ΣΔ 9.57 ± 1.636 23.66 ± 3.691 15.5 ± 2.427

P value of LSD  -- P<0.001a P<0.001a,b

r with BMI  -- r=0.9, p<0.001  --

Serum MDA (nmol/ml)

± ΣΔ 40.2 ± 5.28 66.01 ± 8.43 52.18 ± 5.15

P value of LSD  -- P<0.001a P<0.001a,b

r with BMI  -- r=0.931, p<0.001  --

Serum SOD (U/L)

± ΣΔ 52.99 ± 4.34 33.95 ± 5.45 44.09 ± 4.45

P value of LSD  -- P<0.001a P<0.001a,b

r with BMI  -- r=-0.906, p<0.001  --

Table 3: Serum leptin, adiponectin, irisin, TNF-α, IL-6, MDA and SOD of all studied groups.

Groups Parameters Group I Group II Group III

Systolic blood pressure (mmHg)

± ΣΕ 127.1 ± 1.792 169 ± 4.163 144.1 ± 3.479

P value of LSD  -- P<0.001a P<0.001a,b

r with BMI  -- r= 0.904, p<0.001  --

diastolic blood pressure (mmHg)

± ΣΕ 88.2 ± 3.824 125.42 ± 6.893 103.8 ± 4.91

P value of LSD  -- P<0.001a P<0.001a,b

r with BMI  -- r= 0.933, p<0.001  --

MABP (mmHg)
± ΣΕ 101.233 ± 2.39 139.95 ± 5.82 117.233 ± 3.55

P value of LSD  -- P<0.001a P<0.001a,b
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r with BMI  -- r= 0.955, p<0.001  --

heart rate (beat/min)

± ΣΕ 321.5 ± 12.38 532.5 ± 14.13 402.8 ± 12.06

P value of LSD  -- P < 0.001a P < 0.001a,b

r with BMI  -- r=0.946, p<0.001  --

Serum ALT (mg /dl)

± ΣΕ 44.93 ± 8.25 137.2 ± 9.33 89.9 ± 7.12

P value of LSD  -- P < 0.001a P<0.001a,b

r with BMI  -- r=0.991, p<0.001  --

Serum AST (mg /dl)

± ΣΕ 133.9±12.56 190.8 ± 13.91 160.7 ± 17.83

P value of LSD  -- P<0.001a P<0.001a,b

r with BMI  -- r=0.835, p<0.05  --

Serum ALP (U/L)

± ΣΕ 67.07 ± 4.015 101.1 ± 8.283 83.6 ± 3.930

P value of LSD  -- P<0.001a P<0.001a,b

r with BMI  -- r=0.933, p<0.001  --

Serum LDH (U/L)

± ΣΕ 258.22 ± 4.976 571.4 ± 7.09 440.84 ± 6.927

P value of LSD  -- P<0.001a P<0.001a,b

r with BMI  -- r=0.9, p<0.001  --

Serum albumin (g/dl)

± ΣΕ 4.2 ± 0.25 1.852 ± 0.51 2.938 ± 0.53

P value of LSD  -- P<0.001a P<0.001a,b

r with BMI  -- r=-0.928, p<0.001  --

Table 4: Systolic, diastolic &mean arterial blood pressures, heart rate and serum ALT, AST, ALP, LDH & albumin of all studied groups.

Figure 1: Photomicrograph of normal liver tissue of control group
showing normal sized central vein surrounded by normal rows and
cords of normal hepatocytes (H&E X400).

Figure 2: Photomicrograph of liver tissue of high fat diet fed rat
showing heavy aggregations of chronic inflammatory cells and
dense fibrosis surrounded by hepatocytes This indicates NASH with
fibrosis (H&E X400).
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Figure 3: Photomicrograph of liver tissue of high fat diet fed rat
showing dilated congested central vein surrounded by dense fibrosis
and aggregates of chronic inflammatory cells This indicates NASH
(H&E X400).

Figure 4: Photomicrograph of liver tissue of high fat diet fed
followed by exercise training rat showing mildly dilated congested
central vein surrounded by mild fatty change of the hepatocytes.
This indicates improvement of NASH (H&E X400).

Discussion
Obesity is a worldwide epidemic and is recognized as a risk factor

for many disorders including type-2 diabetes, essential hypertension
and nonalcoholic fatty liver disease (NAFLD). However, the
mechanism that links obesity with high blood pressure and NAFLD
has not been fully elucidated [40]. NAFLD constitutes spectra of liver
diseases ranging from intrahepatic fat accumulation (steatosis) to
various degrees of necrotic inflammation and fibrosis (nonalcoholic
steatohepatitis; NASH) with or without hepatic fibrosis/cirrhosis [41].
NAFLD can be improved through weight reduction and exercise
without medical therapy [42]; however, the mechanism of

improvement remains unknown even though many studies have been
conducted to address this issue [43].

The present study was designed to examine the effect of moderate
intensity exercise on existing cardio metabolic and hepatic
complications linked to obesity including hyperlipidemia, insulin
resistance, hypertension and NAFLD.

In the present study, we observed a significant increase in final body
weight and BMI in high fat diet fed group of rats, which indicates the
occurrence of an overall obesity. In addition, these HFD fed animals
showed a significant increase in abdominal circumference (AC) which
indicate the occurrence of visceral (=abdominal or central) obesity.
These results are in agreement with those of many investigators
[40,44].

Furthermore, in this model of obesity, we found many of the
characteristics of metabolic syndrome (MS) such as dyslipidemia,
hyperglycemia, hyperinsulinemia, insulin resistance, type 2 DM,
hyperleptinemia, hypertension, NAFLD and a significant increase in
AI. All these criteria of MS were greatly reversed by chronic moderate
intensity exercise training even in the absence of caloric restriction.

Our results are in agreement with those of [45-47] who reported
that chronic consumption of HFD in rats induced metabolic syndrome
(MS) as evidenced by visceral obesity, hyperglycemia, dyslipidemia,
endothelial dysfunction and hypertension and found that exercise
improved all of these features of metabolic disease without necessarily
switching to a normal caloric diet.

Metabolic syndrome is strongly linked to the development of
coronary heart disease and stroke mainly through an increased risk of
insulin resistence and other abnormalities including dyslipidemia and
high blood pressure [48]. Results of our research work showed that
HFD induced obesity in rats resulted in a significant increase in
systolic, diastolic and mean arterial blood pressures. These findings are
in consistence with the study of [49] who reported that in rats fed a
HFD, systolic BP and diastolic BP were significantly elevated compared
to a standard diet-fed rats and suggested that a short period of high fat
diet intake might increase Ca2+ channel numbers or alter channel
regulation, leading to increased transmembrane Ca2+ influx that is
associated with significantly elevated blood pressure. Furthermore, The
changes in hemodynamic parameters (BP↑ & HR ↑) observed in the
present study in HFD-induced obesity group may be partially
attributed to activation of sympathetic -renin-angiotensin system,
dyslipidemia, increased oxidative stress and pro-inflammatory
cytokines such as (IL-6 &TNF-α) and diminished endogenous NO
production [17,40].

Moreover, Liver injury is evidenced in HFD fed rats in this study by
the histopathological changes in hepatic tissue as indicated by fatty
infiltration with the presence of foci of mixed inflammatory cell
infiltration and fibrosis that may indicate the development of NASH
and cirrhosis. These histopathological changes were associated with
significant increases in serum levels of ALT, AST, ALP and LDH with
significant positive correlations versus BMI, and with significant
increases in serum levels of albumin with significant negative
correlations versus BMI. These findings are in accordance with the
findings of [50,51]. Both ALT and AST are leakage enzymes, and their
elevation in the circulation indicates significant hepatocellular damage
[52]. The most common cause of NAFLD in developed countries can
be attributed to increased caloric intake that exceeding the rates of
caloric expenditure [53]. Regional mobilization of circulating
triglycerides and fatty acid transport is altered in obese patients with
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NAFLD. Lipoprotein lipase (LpL) hydrolyzes circulating triacylglycerol
followed by tissue uptake through fatty acid transport proteins (FATPs)
together with fatty acid translocase (FAT/CD36) [54]. LPL activity in
adipose tissue in response to insulin seems to be blunted in obese
patients, while associated with increased hepatic LPL and FATP
expression [55].

Insulin resistance (IR) as evidenced by the significantly increased
serum glucose and insulin levels in addition to increased HOMA-IR in
the present study, in HFD fed group, may contribute to the
development of hypertension and NAFLD.

Insulin can be considered as both inflammatory and anti-
inflammatory, in physiological condition insulin stimulates endothelial
NO production to exert a vasorelaxant and anti-inflammatory effect.
Whereas, in the state of insulin resistance, the insulin-stimulated NO
pathway is selectively impaired and the compensatory
hyperinsulinemia may activate mitogen-activated protein kinase
(MAPK) pathway, resulting in enhancement of vasoconstriction,
proinflammation, sodium & water retention and elevation of blood
pressure [56] .

IR and hyperinsulinemia also play a key role in the pathogenesis of
NALFD. IR in NAFLD is predominantly peripheral and occurs in the
skeletal muscle and adipose tissue. Peripheral IR in the skeletal muscle
causes reduced glucose uptake, which leads to hyperglycemia. In
adipose tissue, IR impairs the anti-lipolytic action of insulin, which
leads to an increased release of FFA. Elevated plasma concentrations of
insulin, glucose, and fatty acids then impair the β-oxidation of fatty
acids by negative feedback and promote the uptake of hepatic fatty
acids and triglycerides & de novo lipid synthesis through the
expression of sterol-regulatory element-binding protein (SREBP-1) and
C/enhancer-binding protein (CCAAT/EBP) [57].

In addition, we found that HFD for a period of 12 weeks also
produced a significant increase in the serum TC, TG, LDL-C and
VLDL-C levels together with a significant decrease in serum HDL-C
levels in HFD-induced obesity in rats. These findings are supported by
the work of [40,47] which indicated that obesity adversely affects
plasma lipids by increasing TC, TG, LDL-c and decreasing the levels of
HDL-C. A significant increase in atherogenic index (AI) has also been
demonstrated in our study in HFD fed group.

To compensate for the increased hepatic triglycerides, the liver
forms an atherogenic lipid profile that is strongly associated with
adverse cardiovascular outcomes [58]. SREBP-2 and low-density
lipoprotein (LDL) receptor are down regulated in NAFLD patients,
leading to inhibition of cholesterol uptake and very low-density
lipoprotein (VLDL) synthesis in liver cells, resulting in an increase in
hepatic triglycerides (TG) [59]. Increased TG levels can further disturb
the atherogenic lipid profile by lowering high-density lipoprotein
cholesterol (HDL-C) (an anti-AS factor) and increasing small dense
LDL particles and oxidized LDL (ox-LDL) as a key molecular
connection between NAFLD and atherosclerosis (AS) [60]. Steatosis-
stimulated fatty-acid oxidation in the liver, systemic release of
proatherogenic molecules like tumor necrosis factor-α, interleukin-6
and oxidized LDL cholesterol, increased IR and macrophage activation
have been also suggested as possible explanations for accelerated
atherosclerosis and increased CVD burden in NAFLD patients [61,62].
The atherogenic role of hepatic inflammation is also supported by the
fact that patients with NASH have increased atherosclerosis when
compared with patients with simple steatosis [63]. Therefore, NAFLD
seems to be an early risk factor for atherosclerosis [64].

After the initial development of steatosis, the liver becomes
extremely vulnerable. Multipe series of injurious factors, including
oxidative damage, dysregulation of multiple adipokines, apoptpsis and
activation of hepatic stellate cell, may lead to hepatocyte injury and
finally to the progression from simple steatosis to NASH and fibrosis
[65].

An important detectable parameter in our model is the presence of
oxidative stress, which was indicated by the significant increase in
serum level of MDA indicating lipid peroxidation associated with the
significant decrease in serum SOD level in HFD-fed rats. Oxidative
stress and free radicals are known to be involved in a variety of human
pathologies including atherosclerosis, obesity and hypertension [66].

High serum FFAs levels activate mitochondrial, peroxisomal and
microsomal fatty acid (FA) oxidation promoting the release of reactive
oxygen species (ROS) which contribute to apoptosis and nuclear &
mitochondrial DNA damage in NASH [67]. Moreover, ROS and
products of lipid peroxidation can lead to fibrosis by activating hepatic
stellate cells, which synthesize collagen and perpetuate the
inflammatory response, causing fibrogenic response [68].

Human studies also support the role of oxidative stress (OS) in the
development of hypertension, especially in obesity. An imbalance in
superoxide and NO production may account for reduced vasodilation
together with sympathetic nervous system excitation by OS in the
brain could play an important role in the pathogenesis of obesity-
associated hypertension [69].

Our results also revealed that HFD induced obesity resulted in
significant changes in various adipocytokines. There were significant
increases in serum TNFα, IL-6 and leptin levels with significant
positive correlations versus BMI but there were significant decreases in
serum adiponectin and irisin levels with significant negative
correlations versus BMI in the HFD fed group. This is in agreement
with previous studies showing that the concentration of adiponectin
decreases in obesity and increases after weight loss [70]. Moreno-
Navarrete et al. [71] also reported that circulating irisin decreased in
obesity and negatively associated with BMI. However, at variance of
our results, Stengel et al. [72] reported that obese patients have higher
circulating irisin levels compared with normal weight controls and
positively correlated with body weight and BMI. On the other hand,
[73] didn’t find a positive or negative correlation between circulating
irisin levels and BMI.

Obesity is considered a state of chronic inflammation. It leads to
increased production of monocyte chemotactic protein (MCP-1) by
the adipocytes, which attracts more macrophages to the adipose tissue
itself. Once the macrophages in the adipose tissue are activated, a self-
perpetuating inflammatory cascade is triggered by secretion of pro-
inflammatory cytokines like TNF-α and IL-6 [74]. Moreover, lipid
accumulation in the liver induces Bax (pro-apoptotic Bcl-2 family
member) translocation to lysosomes causing their destabilization and
release of lysosomal cysteine protease cathepsin B leading to activation
of inhibitor of nuclear factor kappa-B kinase (IKK-β) in hepatocytes
that activates nuclear factor-kappaB (NFκB), and enhances gene
expression of proinflammatory cytokines including TNF-α and IL-6
[75].

TNF-α is a key link in obesity-induced IR and stimulates the
hormone sensitive lipase resulting in increased serum FFA and their
influx in the liver [76]. Increased IL-6 may also promote partial liver
injury and atherosclerosis [77]. IL-6 can activate macrophages to
secrete matrix metalloproteinase-1, induce mononuclear cells to
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participate in the development of vessel plaque, promote synthesis of
LDL receptor and influx of LDL into macrophages, enhance lipid
deposition and stimulate vascular smooth muscle cell proliferation
[78].

Leptin also plays a crucial role in aggravation of NASH in obese
individuals [79]. Leptin levels are enhanced by pro-inflammatory
cytokines such as IL-1 and TNF-α and help to perpetuate the loop of
chronic inflammation in obesity and down regulates the transcription
of the preproinsulin gene and insulin excretion which could be
connected with high leptin levels in IR [80,81]. Hyperleptinemia also
elevates the sympathetic drive via the corticotropin-releasing factor
[82], elevates renal sympathetic nerve activity resulting in sodium
retention, volume expansion and blood pressure elevation [83] and
promotes the release of vasoconstrictive substances such as angiotensin
II and endothlin-1 thereby increasing the blood pressure [84].
Although leptin resistance refers to the condition of diminished
cellular and metabolic responsiveness to leptin, a condition of partial
or selective leptin resistance seems to exist whereas the
sympathoexcitatory effects are maintained leading to hypertension and
tachycardia [85].

On the other hand, plasma concentrations of adiponectin were
found to be significantly lower in obese subjects [86]. Adiponectin may
be a promising drug candidate in the treatment of liver diseases
through its insulin-sensitizing and anti-inflammatory effects [87].
Moreover, adiponectin can also stimulate vascular endothelial nitric
oxide synthase (eNOS) mRNA expression, and progressively reduce
atherosclerotic lesions by inhibiting VSMC proliferation & migration
to suppress plaque disruption and inhibiting the endothelial cell (EC)
inflammatory reaction, another key molecular pathway involved in AS
[88].

Likewise, plasma irisin level is also reduced in obese patients with
NAFLD and could behave as a protective factor against liver steatosis
[89]. Irisin may modulate the peroxisome proliferator-activated
receptor alpha (PPARα) signaling pathway, a key regulator of lipid
metabolism, leading to an improvement in hepatic steatosis and
insulin sensitivity [90]. Moreover, Lu et al. [91] found that irisin
treatment reduced the atherosclerotic plaque area, inflammatory cell
infiltration and inflammatory factor expression on the vascular wall. It
can also inhibit high glucose-induced endothelial cell apoptosis,
promote endothelial cell proliferation, and alleviate endothelial cell
dysfunction [92].

Noteworthy, our experimental findings showed that exercise even in
the absence of reduced caloric intake, is associated with reduction in
HFD-induced visceral obesity. This is in agreement with those from
clinical studies [93].

Exercise also significantly reduced the dyslipidemia observed in the
HFD fed group and improved the atherogenic index in our study.
Previous studies have shown also that physical training and caloric
restriction are effective at improving lipid profiles in both humans [94]
and animals [45]. Exercise training could contribute to attenuating
hepatic TG accumulation via suppressed de novo lipogenesis and/or
TG synthesis through suppression of hepatic SREBP-1c. It also
increased the expression and phosphorylation of hepatic 5' AMP-
activated protein kinase (AMPK) in rats and thereby the training-
induced β-oxidation of fatty acids and attenuation of lipogenesis to be
an effective and non-pharmacological means to combat HFD-induced
fatty liver and its metabolic complications [43,95].

In the present study and in other studies [47], exercise training
and/or switching from a HFD to a control diet improved lipid profiles
and decreased the atherogenic index (AI). Touati et al. also observed
that the AI was less in the exercise-trained rats than in the rats with
modified diet.

Concerning plasma triglycerides (TG), our experiments showed
that HFD induced obesity was associated with a significant increase in
serum levels of TG that were improved by exercise training. This is in
contrast to the results of Touati et al. who found that metabolic
syndrome (MS) induced by HFD consumption did not induce change
in the plasma triglyceride levels, despite hyperinsulinemia and
hyperglycemia. Gami et al. has shown that plasma
hypertriglyceridemia is strongly correlated with the prevalence and
incidence of metabolic syndrome (MS) and cardiovascular disease.

Our study also revealed a significant improvement of insulin
resistance indicated by the significant decrease in serum glucose and
insulin levels in addition to decreased HOMA-IR in HFD-fed group
subjected to exercise training. Regular physical activity mends insulin
function and glucose tolerance in patients with obesity & insulin
resistance [96]. It also augments the oxidative capacity of skeletal
muscles due to an increase in fatty acid transport proteins, which
improved the rate of whole body fat oxidation [97].

Moreover, the present study demonstrated that obese rats subjected
to moderate intensity exercise training was associated with a
significant decrease in SBP, DBP and MABP. These results are in
agreement with those of many investigators who showed that diet
modification and/or regular exercise training resulted in a significant
reduction of ABP and even prevention of hypertension in obese rats
[47,98]. Exercise and diet modification both ameliorate endothelial
dysfunction by increasing expression and activity of e NOS, generating
NO and modulating ROS production leading to reversal of
hypertention and risk factors of the MS [47,99].

Touati et al. have noted that a decrease in blood pressure was more
effective in trained obese rats than in sendentary obese rats with
modified diet. They showed that exercise with or without diet
modification not only restored but also increased the endothelium and
No-dependent aortic relaxant’s response to acetylcholine whereas
switching from a HFD to a control diet in sedentary rats improved but
did not completely normalize it. Similarly, they observed that plasma
Thiobarbituric acid reactive substances levels were more diminished in
training rats independently of diet used than in sendentary rats with
modified diet. Taken together, these findings indicate that exercise was
more effective in reversing endothelial dysfunction and oxidative stress
than converting to normal caloric diet.

The beneficial effects of exercise training on the reversal of HFD-
induced fatty liver were also demonstrated in our study by the
significantly decreased serum ALT, AST, ALP and LDH and the
improvement in liver histopathology. Many studies have also reported
reductions in hepatic lipid content in NAFLD patients after exercise
training intervention programs that did not induce weight loss which
suggest that exercise per se can reverse hepatic steatosis [100].
Nevertheless, these data do not identify the physiological or cellular
adaptations that elicit this improvement [11].

Exercise training also significantly decreased the serum levels of
TNFα, IL-6 and leptin but significantly increased the serum levels of
adiponectin and irisin in the HFD fed group subjected to exercise
training. These results are supported by those of [101], who revealed
that aerobic exercise training resulted in a significant decrease in
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serum leptin level that may be added to the beneficial effects of
exercise. Exercise training especially that which is associated with
reduced fat mass corrects the dysfunction in adipokine and cytokine
expression and the magnitude of benefits may vary with the type and
amount of exercise [102].

Exercise stimulates the expression of fibronectin type-III domain
containing protein 5 (Fndc5), a membrane protein that is cleaved and
secreted as irisin [103]. Irisin increases energy expenditure and it could
be responsible for a better control of certain diseases related to insulin
resistance such as fatty liver disease [104]. Moreover, Mazur-Bialy et al.
[105] reported that irisin alleviates the inflammatory activation of
macrophages by suppressing the phosphorylation of MAPK and
consequently a lower NF-κB activation leading to reduction in both the
expression and release of pro-inflammatory cytokines such as IL-1β,
TNFα, IL-6 and MCP-1.

Exercise also controls the release and activity of at least two
cytokines, TNF-α & IL-6 that could contribute to the natural protective
effects of physical activity. Physical exercise upregulates IL-6,
improving insulin sensitivity by increasing skeletal muscle glucose
uptake and promoting fatty acid oxidation [106]. Muscle-produced
IL-6 also exerts anti-inflammatory effects through its inhibitory effects
on TNF-α, IL-1β, and activation of interleukin-1 receptor antagonist
(IL-1ra) and IL-10 [107]. Nevertheless, IL-6 overexpressed in
adipocytes and has been reported to be increased in obese patients
[108]. Moreover, IL-6 can induce insulin resistance in hepatocytes,
adipocytes and skeletal muscle [109]. These data suggest that a strict
balance is required to keep metabolism stable [110].

Many studies also reported the antihypertensive effect of exercise. It
is able to reduce heart rate, improve the sensitivity of aortic
baroreceptors, which contributes to a more efficient regulation of
blood pressure [111]. Decreased activity of both the sympathetic
nervous system and renin-angiotensin system were also documented
with regular exercise training leading to lowering of HR and BP [22].

In summary, the data from this study demonstrated that high fat
diet-induced obesity is associated with insulin resistance, dyslipidemia,
altered adipocytokines production, decreased antioxidant levels,
hemodynamic changes, fatty liver disease (steatohepatitis) and hepatic
dysfunction. These criteria of metabolic syndrome can be corrected by
moderate exercise training. In addition, moderate exercise training
seems to be an effective strategy to reverse almost all factors of
cardiovascular diseases and NAFLD risks associated with metabolic
syndrome. Thus, exercise prescription might be recommended either
alone or as adjuvant of drug therapy for treatment/attenuation of the
serious complications of HFD-induced obesity.

Further studies will be necessary for a better understanding of the
precise effect of exercise training in ameliorating the cellular and
molecular mechanisms by which HFD contribute to cardiovascular
diseases and NAFLD development and progression. Moreover, further
research is needed, namely in humans, in order to establish the
preferred type, duration and intensity of training that should be
practiced in order to maximize the benefits of exercise.
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