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Introduction
Obesity has been an epidemic in the US for more than two decades. 

The proportion of overweight and obese adults in the population 
continues to increase. Breast cancer is the second leading cause of 
death in women in US. The American Cancer Society has estimated 
that 229,315 women will be diagnosed with new cases of breast cancer 
(29% of total new cancer cases) and 38,552 women will die from breast 
cancer, which is 14% of estimated total cancer deaths in 2012 [1].

A recent report suggests that obesity is a major risk factor for 
both premenopausal and postmenopausal women. They reported data 
from two large chemoprevention trials that had enrolled women at a 
high risk of breast cancer. Obesity was associated with only a modest, 
non-significantly increased risk of postmenopausal breast cancer 
but a significant 70% increased risk of premenopausal breast cancer 
compared to normal weight [2].

An investigation of the role of overweight and obesity in 
carcinogenesis documented not only an association between body 
mass index (BMI) and mortality from various types of cancer, but it 
also provided a reliable estimate of the contribution of overweight 
and obesity to the total mortality from cancer. The study reported that 
women with the highest BMI (40 kg/m²) had mortality rates from all 
types of cancer combined that were 62% higher (with a relative risk of 
death of 1.62) than the rates of women of normal weight [3].

Chronic oxidative stress plays a critical role in etiology and 
pathogenesis of many diseases in human and animals. One of the 
aspects of this problem is the role of oxidative stress in the genesis of 

obesity or their interaction. It has been established in the literature that 
chronic oxidative stress plays important role in pathogenesis of obesity 
[4-6]. 

The sulfur-containing amino acid methionine not only is one of the 
essential amino acids participating in a protein synthesis, but also has been 
a source of incredibly important metabolites of S-adenosyl methionine 
and S-adenosyl homocysteine [7-9]. S-adenosylhomocysteine (SAM) 
is an intermediate product of methionine after addition of ATP by 
enzyme methionine adenosyltransferrase (MAT) [10]. It can be 
synthesized in many mammals cells and stored or used extensively 
for biochemical reactions donating one carbon (CH3) group which is 
known as methyl group, in a variety (approximately 100) of methylation 
reactions, including DNA, RNA, proteins, phospholipids, hormones, 
neurotransmitters and many others products. Methylation reaction 
plays important regulatory and biosynthetic roles intracellularly 
under physiological homeostatic conditions and in the genesis and 
development of many diseases [11,12]. After donation of a methyl 
group, SAM becomes S-adenosylhomocysteine (SAH), another 
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intermediate product of methionine. It has been established that SAH 
plays an appositive roll to SAM not activating but the inhibiting activity 
of methylases and decreasing of the methylation of many subtracts. 
Deficiency of a methyl group or inappropriate methylation potentially 
has harmful effect on genomic stability. SAM: SAH ratio, known as 
“methylation ratio”, plays extremely important role in balanced 
methylation capacity [13,14].

Glutathione is the major intracellular and most abundant 
intracellular antioxidant involved in regulation of intracellular redox 
environment and is essential in complex process of detoxification. 
Concentration and intracellular distribution of glutathione are directly 
proportional to the capacity to detoxify pro-oxidant exposure, and 
conditions with low GSH reserves would express a vulnerability 
phenotype that is less able to detoxified and resolve oxidative stress. 
The GSH:GSSG ratio are essential for redox-sensitive cell signaling and 
homeostasis [15-17]. 

Figure 1 is an overview of the 3 interdependent pathways: folate 
cycle, methionine cycle, and transsulfuration cycle involved in folate-
dependent methionine transmethylation and transsulfuration to 
gluthathione. The vital importance of these three interconnected 
pathway is often underscored by their essentiality for error-free DNA 
synthesis, for cellular methylation capacity, and for the maintenance of 
glutathione redox homeostasis [18].

Previously, we reported that obesity increases incidences of 
mammary tumor development using obese Zucker rat DMBA-
induced mammary tumor model [19]. In this model, we use lean 
and obese Zucker rats, and at day 50 of age, we gavage them with 65 
mg DMBA/kg of body weight. DMBA treatment has been known 
for the past 60 years to induce mammary tumors in rats, and breast 
cancer researchers, including us, have used this model for past 20 
years. We have used this DMBA-induced mammary tumor model to 
investigate the effects of obesity on serum concentration of oxidative 
stress markers and products of oxidative damage and methylation-
reaction donor S-adenosylmethionine following 7,12-dimethylbenz (a) 

anthracene (DMBA) treatment. We found that obesity can contribute 
to significant imbalances in oxidative/reduction homeostasis in serum 
and depression in serum SAM: SAH ratio, known as “methylation 
ratio”, and increase SAH level, known as potent inhibitor methylases 
after DMBA treatment.

Experimental design 

Obese fa/fa and lean Zucker rats were purchased at 5 weeks of age 
(Harlan Industries, Indianapolis, IN). Animals were housed two per 
cage and allowed ad libitum access to water and a regular chow diet 
(Harlan-Teklad, Madison, WI). All animal protocols were approved 
by the Institutional Animal Care and Use Committee (IACUC) at the 
University of Arkansas for Medical Sciences. Since it has been shown 
for the past several years that the DMBA adducts can be detected after 
24 hrs post-DMBA treatment, we therefore used 24 hrs as the marker 
to detect the DNA methylation status  [20,21]. At age 50 days, all rats 
were orally gavaged with 65 mg/kg DMBA (Sigma Chemical Co., St. 
Louis, MO) in sesame oil. Rats were weighed twice per week (Monday 
and Thursday at 9:00 AM). Rats were sacrificed 24 hours post-DMBA 
treatment; serum was collected and stored until analysis.

HPLC method: All methodological details for determination of 
SAM, SAH, adenosine, and thiols are previously published [22,23]. 
Briefly, 100 µl of 10% meta-phosphoric acid was added to 200 µl of 
plasma to precipitate protein; the solution was mixed well, and 
incubated on ice for 30 minutes. After centrifugation for 15 minutes 
at 18,000g at 4°C, supernatants were passed through a 0.2 µm nylon 
membrane filter and were injected into the HPLC system. The analyses 
were performed using HPLC with a Shimadzu solvent delivery system 
(ESA model 580) and a reverse phase C18 column (5 µm; 4.6 × 150 
mm, MCM, Inc., Tokyo, Japan) obtained from ESA, Inc. (Chemsford, 
MA). A 20 µl aliquot of plasma extract was directly injected onto 
the column using Beckman Auto sampler (model 507E). All plasma 
metabolites were quantified using a model 5200A Coulochem II and 
CoulArray electrochemical detection systems (ESA, Inc., Chelmsford, 
MA) equipped with a dual analytical cell (model 5010), a 4-channel 
analytical cell (model 6210), and a guard cell (model 5020). The 
concentrations of plasma metabolites were calculated from peak areas 
and standard calibration curves using HPLC software.

Statistical analysis

The data are presented as mean ± SD and were assessed by two-way 
analysis of variances (ANOVA). A P-value of<0.05 was considered as 
significant.

Results
The average body weight at the beginning of the experiment for 

lean rats was 74.83g, and for obese rats, the average body weight was 
109.83g. At the end of the experiments, the average body weights (mean 
+ standard error) were 127.33 g + 3.7 g for lean rats and 217.83 g + 7.51 
g for obese rats. The lean rats gained more than 52 g and the obese rats 
gained more than 90 g during course of this experiment. 

Obesity changed the biochemical profiles in serum for both 
methylation-related and oxidative stress-related metabolites. As shown 
in Table 1, obese rats had a significantly (P=0.024) lower level of free 
reduced glutathione (fGSH) compared to lean rats. On the other 
hand, obese rats have a much higher (P=0.007) level of free oxidized 
glutathione (fGSSG) compared to lean rats. Obesity lowered the 
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Figure 1.Methionine metabolism 

The three interdependent pathways, the folate cycle, methionine cycle, and transsulfuration, are involved in folate-

dependent methionine transmethylation to gluthathione redox metabolism. 

 

Table1. Concentration of oxidative stress related thiols in serum of obese and lean rats 

 Lean Obese P 

fGSH, μmol/L 1.571 ± 0.116 1.402 ± 0.111 0.024 

fGSSG, μmol/L 0.232 ± 0.0411 0.327 ± 0.055 0.007 

fGSH:fGSSG 6.93 ± 1.23 4.41 ± 0.95 0.003 

fCystine, μmol/L 26.79 ± 4.43 38.02 ± 3.21 0.001 

fCysteine, μmol/L 36.94 ± 5.27 26.32 ± 3.08 0.002 

fCystine:fCysteine 0.752 ± 0.214 1.47 ± 0.273 0.001 

Figure 1: Methionine metabolism. The three interdependent pathways, the 
folate cycle, methionine cycle, and transsulfuration, are involved in folate-
dependent methionine transmethylation to gluthathione redox metabolism.
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concentration of reduced free glutathione, and increased concentration 
of free oxidized glutathione (P=0.003) reduced the fGSH:fGSSG ratio, 
or “intracellular oxidative ratio,” compared to lean rats. A serum level 
of glutathione are reflecting and representing intracellular changes. 
In addition to changes of glutathione concentration in serum, obese 
rats also had a significantly (P=0.002) lowered level of free cysteine 
and a significantly (P=0.001) higher concentration of free cystine 
(the oxidized form of cysteine) compared to lean rats. All of these 
changes, were accompanied with a significant (p=0.001) increase of 
fCystine:fCysteine ratio, known as “extracellular oxidative ratio,” in 
obese rats.

We observed a significantly (P=0.041) lower level of Glutamyl-
Cysteine (a metabolic precursor in synthesis GSH) in the serum of 
obeserats compared to lean group. Meanwhile, serum concentration 
of Cystein-Glycine (a product of catabolism of GSH) in obese rats 
was significantly (P=0.031) higher compared to lean rats. As a 
consequence of the increases in both oxidative ratios (fGSH:fGSSG 
and fCystine:fCysteine) in the serum of obese rats, we observed a 
significantly (P=0.04) increased concentration of 3-nitro-Tyrosine in 
obese rats compared to the lean group. 3-nitro-Tyrosine is a modified 
amino acid Tyrosine that can be formed under oxidative-reduction 
imbalance in obese rats.

As shown in Table 2, obesity significantly (P=0.042) lowered 
the serum concentration of methionine compared to the lean 
rats. The serum concentration of free reduced homocysteine was 
significantly higher (P=0.034) in obese animals compared to lean 
rats. Both methionine and homocysteine alternative changes are 
followed by an increased concentration of adenosine (P=0.005) 
in obese rats compared to lean rats. Despite a decrease of serum 
concentration of S-adenosylmethionine (SAM) that was not significant 
between obese and lean rats, serum concentration of the product of 
S-adenosylhomocysteine (SAH) was significantly higher (P=0.025) in 

obese rats compare to lean rats leading to a decrease of almost twice 
(P=0.023) of the SAM: SAH ratio, known as “methylation ratio”.

Discussion
Oxidative stress plays a major role in the lives of cells under 

physiological and pathological conditions. Oxidative/reduced balance 
in intracellular and extracellular compartments of cells is equally 
important for cells homeostasis. Changes in this balance can have 
negative consequences on biochemical and morphological stability of 
the cell [24-26].

Free reduced glutathione is a major intracellular antioxidant. When 
reduced glutathione becomes oxidized, glutathione is transported in 
extracellular compartments including blood, and blood can reflect 
of intracellular status of these metabolites. We found that obesity 
decreased the fGSH:fGSSG ratio. Moreover, the ratio of cystine: 
cysteine, which is known as the extracellular reflection of oxidative 
stress, increases in obese rats which additionally support our finding 
with free glutathione. Based on changes of these two ratios, a decrease 
intracellular and extracellular antioxidative capacity in obese animals 
makes them a potentially more vulnerable target for reactive oxygen 
species (ROS) and nitrogen oxygen species (NOS) to attack and 
harm cellular homeostasis resulting in hard consequences on many 
intracellular reactions, including involvement of proteins, lipids, DNA, 
and RNA. As evidence of this much higher pro-oxidative environment 
in obese rats, one of the possible candidate molecules representing 
protein damage is 3-nitrotyrosine [27,28]. 3-nitrotyrosine (3-NT) is 
modified (damaged) amino acid by NOS and capable change proteins 
properties which will lead to change enzymes activity. The significantly 
increased serum level of 3-NT in obese rats compared to lean rats 
confirms and supports our finding and conclusions about negative 
influence of pro-oxidative state in obese rats compared to lean rats. 
Moreover, we can speculate that pro-oxidative intracellular conditions 
in obese rats is also capable of changing the status of the sulfur-
containing amino acid cysteine and makes it potentially more oxidized 
which can be additionally to modify by NOS and damage proteins.

As we have shown earlier, a decrease in the serum concentration 
of cysteine and an increase of the cystine:cysteine ratio in obese 
rats is capable of having a potentially negative effect on glutathione 
synthesis because cysteine is a rate limiting amino acid. To support 
this statement, we analyzed serum concentrations of two intermediate 
metabolites involved in glutathione synthesis; free Glu-Cys and 
glutathione catabolism free Cys-Gly. The serum concentration of Glu-
Cys in obese rats was lower and the serum concentration of Cys-Gly 
was higher in obese rats compared to lean rats leading to a deficiency of 
GSH and intracellular antioxidant capacity.

Methylation is an important biological reaction to keep metabolic 
balance and structural integrity of cells. One of the important aspects 
of cell life and genetic stability is DNA methylation. DNA uses SAM 
as a methyl group donor. Despite the fact that obese rats did not 
develop significant SAM deficiency, they had a higher level of SAH 
and a SAM/SAH methylation ratio almost two times lower that has 
suppressive methylation properties [29,30]. Moreover, we observed 
an increasing level of homocysteine in obese rats, which is a key 
point in the methionine metabolism cycle. If homocysteine is not 
converted to methionine through homocysteine remethylation using 
folate as a methyl group donor, it contributes to decreased levels of 
serum methionine in obese animals. Also, an increased homocysteine 

Lean Obese P
fGSH, μmol/L 1.571 ± 0.116 1.402 ± 0.111 0.024

fGSSG, μmol/L 0.232 ± 0.0411 0.327 ± 0.055 0.007

fGSH:fGSSG 6.93 ± 1.23 4.41 ± 0.95 0.003

fCystine, μmol/L 26.79 ± 4.43 38.02 ± 3.21 0.001

fCysteine, μmol/L 36.94 ± 5.27 26.32 ± 3.08 0.002

fCystine:fCysteine 0.752 ± 0.214 1.47 ± 0.273 0.001

Glu-Cys, nmol/ml 0.31 ± 0.05 0.25 ± 0.04 0.041

Cys-Gly, nmol/ml 4.64 ± 0.72 5.67 ± 0.79 0.031

3-nitro-Tyrosine, pmol/ml 25.98 ± 7.324 35.65 ± 8.092 0.04

Mean ± SD
Table1: Concentration of oxidative stress related thiols in serum of obese and 
lean rats.

Lean Obese P
Methionine, nmol/ml 43.68 ± 8.41 34.55 ± 6.01 0.042

fHomocysteine, nmol/ml 1.284 ± 0.237 1.644 ± 0.299 0.034
Adenosine, pmol/ml 305.3 ± 63.5 438.1 ± 63.3 0.005

SAM, pmol/ml 221.5 ± 68.2 179.7 ± 35.3 0.13
SAH, pmol/ml 14.77 ± 3.99 24.88 ± 8.94 0.025

SAM:SAH 15.83 ± 6.79 7.98 ± 3.02 0.023

Mean ± SD
Table 2: Concentration of methylation related metabolites in serum of obese/
treated and lean/treated rats.
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concentration in obese animals decreases cysteine concentration 
through the transsulfuration pathway and decreases the synthesis 
of glutathione. Homocysteine plays a key role in interconnection of  
both methylation and transsulfuration reactions producing profound 
consequences for cells integrity and homeostasis.

In summary, we observed that obese rats have a significant 
impairment in antioxidative capacity accompanied by a methylation 
deficiency and genetic instability that can potentially have a 
Procarcinogenic effect.
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