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The tACS only differs from tDCS by the fact that sinusoidal currents 
are given at a specific frequency in place of continuous and constant 
currents. tACS directly modulates oscillatory brain activity in such 
a way that the stimulation frequency can be adapted to the frequency 
of the specific targeted oscillation of the brain. Although there is an 
exponential use of tDCS in different conditions, the application of tACS 
on the cerebral cortex and the cerebellum is only recently explored [28]. 
However, the related perspectives are very promising and may occupy a 
privilege position in future AD therapies.

The aim is to modulate neuronal oscillations correlated with sensori-
motor and cognitive alterations in MCI and AD patients. As an example, 
alpha oscillation can be seen as representative of internal brain states 
and as a predictive index of sensory and cognitive performance [29].

In this context, Zaehle et al. (2010) [30] demonstrated that tACS 
set at the same alpha rhythm as the individual participant significantly 
enhanced the endogenous alpha power in parieto-central electrodes of 
the scalp and induced significant plasticity. In accordance to the spike 
timing dependent plasticity (STDP) rule, this effect was reproduced in 
artificial neural network. Following a STDP paradigm [31], a specific 
frequency input can produce long term potentiation (LTP) in the 
oscillating circuit only if it presents a similar resonance frequency in 
the circuit. Conversely, if the resonance frequencies between the input 
and the circuit are different a long-term depression (LTD) is produced. 
Such type of plasticity has been recently observed after gamma tACS 
(70 Hz) applied on the left primary motor cortex (anode) and the right 
cerebellum (cathode) producing a significant improvement of visuo-
motor performance [32].

Ultimately, it seems that the increase or decrease of the spiking 
threshold of the neurons explains the short-term effects of tDCS while 
the induced synaptic plasticity (LTD and LTP) account for the long-
lasting effects. Still, the exact neural mechanisms underlying tDCS and 
tACS are largely unknown. 

Attempts to treat AD with medication have shown controversial 
effects or minor efficacy [27,33]. Furthermore, ways to improve and 
stabilize the tDCS and tACS effects should be investigated. Future 
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The Alzheimer disease (AD) is one of the most devastating 
neurodegenerative alteration of the brain in the elderly population. 
Clinically characterized as a progressive, neurodegenerative disease, 
including functional and cognitive impairments, AD is also well 
histopathologically demarcated by the presence of amyloid deposits 
and tau-related neurofibrillary tangles correlated with loss of synapses 
and neurons in crucial regions of the brain [1-3]. These pathological 
elements are well identified with cerebrospinal biomarkers (i.e., amyloid 
beta (Aβ42) and phospho-tau (p-tau) levels) [4-6].

In spite of intense basic researches, the prevention and therapy 
remain largely problematic and must be urgently reinforced [6]. From 
the most optimistic view, a definitive biological solution seems not to be 
attainable before twenty years. 

Following a system perspective the brain is considered as a complex 
network linking the different regions into privileged connected nodes 
such as small-world, hubs and rich clubs with hierarchical modularity 
[7-9]. Alteration of this system can be viewed as a possible final outcome 
in neurological disorders [9]. In addition, the dynamic of these networks 
and related brain functions mainly resulted from electrical oscillations 
[10-15] which can be approached with non-invasive electrophysiological 
tools. 

Among these interventions, the transcranial direct or alternating 
current stimulation (tDCS/tACS) coupled with other tools issued from 
the brain computing interface (BCI), mental imagery (MI) and virtual 
reality stimulation (VRS) is one of the most promising approach [16,17]. 
Briefly, the tDCS/tACS method consists in the application of small 
intensity of current (~2 mA during ~20 min) applied by means of sponge 
electrodes placed on the skin head at privileged sites. The choice of the 
site for the anodal and cathodal current application is important because 
current induces excitatory effect on the neuronal network situated just 
under the anode and conversely induces inhibitory effect at the cathode. 
The neurophysiological effect consists of an increase or a decrease of 
the spiking threshold of the neurons [18]. This must conduct research 
effort to find new technological tools based on artificial manipulation 
of these neuronal oscillations in order to enhance or restore the failed 
communication described in AD and individuals with mild cognitive 
impairment (MCI). The non-invasive electrical stimulation may also 
represent very promising strategy to improve neural circuits functioning 
as a complement tool to pharmacotherapy [19]. 

The tDCS/tACS approach can be seen as rather simple but still must 
be carefully and systematically controlled, regarding the complexity of 
the involved neural network and the induced neural plasticity. To do so, 
tDCS/tACS must be combined with neuroimaging procedures (fMRI, 
MEG and EEG dynamic combined to transcranial magnetic stimulation 
(TMS)) to follow the involvement of the excitatory/inhibitory process. It 
was recently demonstrated that tDCS can improve cognition in AD and 
MCI patients [20-27] reinforcing the idea that this therapeutic avenue 
deserves to be urgently developed.
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studies should also try to untangle the mechanisms sustaining long-
lasting effects of transcranial current stimulation, as it might interplay 
with pathological mechanisms of dementia neurodegeneration with 
either beneficial or deleterious side effects [33].

Finally, to move transcranial current stimulation into regular 
treatment, large-scale randomized and multi-site controlled studies 
that integrate these techniques into traditional methods such as 
pharmacological treatment and psycho-cognitive therapy should be 
conducted. Non-invasive brain stimulation is an awaited complement 
to the weak therapeutic arsenal of AD. Moreover, future large-scale 
clinical studies may demonstrate its efficiency in other types of 
dementia [27,33].
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