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Abstract

H2AX is required for genome stability. In response to DNA double-strand breaks (DSBs), H2AX is rapidly
phosphorylated to form γH2AX foci, which mediate DNA repair and checkpoint signaling. This process is regulated
by modifications and molecular interactions of H2AX. In addition, the rapid stabilization of H2AX in response to
DSBs facilitates γH2AX foci formation. Although H2AX is markedly downregulated in many cellular states, γH2AX
foci can still efficiently form upon DSB generation. Here, we review the regulation of H2AX in response to DSBs.
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Introduction
H2AX mediates repair of DNA double-strand breaks (DSBs), and

hence is required for genome stability. In response to DSBs, H2AX is
rapidly phosphorylated at Ser139 by ATM, ATR, or DNA-PK, which
leads to the generation of γH2AX foci at DSB sites [1,2]. These foci
promote DSB repair by non-homologous end joining and/or
homologous recombination [3,4]. MDC1 rapidly binds to γH2AX and
promotes recruitment of the MRN (MRE11-Rad50-NBS1) complex
and ATM. This leads to enlargement of γH2AX foci and amplification
of DNA damage signaling, which usually peaks at 30 min after damage
[5]. γH2AX foci serve as a platform for the recruitment of DSB repair
factors and chromatin-remodeling complexes [6,7]. Mono-
ubiquitination at K119/K120 [8-12] and poly-ubiquitination at
K13/K15 [13,14] are also involved in the effective recruitment of many
DNA repair-associated factors, such as BRCA1 [15] and 53BP1 [14].

Transient Upregulation of H2AX Efficiently Induces
DSB Repair in Quiescent Cells

H2AX is a variant of histone H2A. The expression level of H2AX
greatly differs between cell types. In particular, H2AX is markedly
downregulated in quiescent normal cells [16]. Intriguingly, our recent
studies revealed that γH2AX foci efficiently form in response to DSBs
even in the H2AX-diminished quiescent state [17]. This is dependent
on transient and immediate expression of H2AX upon DSB formation.
H2AX is continuously transcribed and translated in non-damaged
cells, but undergoes proteasomal degradation mediated by the E3
ubiquitin ligase HUWE1 (Figure 1A) [17]. This proteolytic degradation
is immediately blocked after DSB formation and consequently H2AX
rapidly accumulates and γH2AX foci efficiently form (Figure 1B).

Figure 1: Efficient Induction of DSB Repair in Quiescent Cells.
H2AX is markedly downregulated in quiescent cells (A). H2AX is
immediately stabilized upon DSB formation, and this is mediated
by ATM and SIRT6/SNF2H (B). Thereafter, γH2AX foci are
enlarged, enabling efficient checkpoint signaling activation and
subsequent DSB repair (C).
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Although the mechanism that regulates this process has not been
fully elucidated, it involves SIRT6 and SNF2H for chromatin
remodeling and ATM to halt proteasomal degradation [17]. This leads
to the recruitment of repair factors in association with additional
modifications, including ubiquitination of H2A/H2AX (Figure 1C).

After DSB repair is complete, the cellular H2AX level generally
decreases and returns to that observed in the initial quiescent state
[17]. Thus, H2AX is markedly downregulated in quiescent cells, but
these cells still express H2AX in response to DSBs. However, H2AX is
only transiently expressed to efficiently induce DSB repair, and H2AX
expression decreases once this repair is complete.

Unlike normal cells, many cancer cells constantly express H2AX,
and the H2AX level in these cells is generally 0.1-10% of the total H2A
level [2]. However, such cells still demonstrate upregulation of H2AX
in response to DSBs in an ATM and a SIRT6/SNF2H-dependent
manner [17]. In addition, transient H2AX upregulation is required for
efficient DSB repair in H2AX-expressing cancer cells. Thus, transient
upregulation of H2AX is a general requirement for the efficient
induction of DSB repair [17].

Establishment of Cellular Quiescence with
Downregulated H2AX

H2AX is highly expressed in actively growing cells [16], but is
usually downregulated in normal cells after serial proliferation. In fact,
normal cells generally enter a growth-arrested state with marked
downregulation of H2AX in vivo and in vitro [16]. There are several
growth-arrested cellular states, including senescence and quiescence,
which can be clearly discriminated. The quiescent state is widely
established with marked downregulation of H2AX; H2AX
downregulation may directly lead to the acquisition of quiescence
because cells enter an identical state upon knockdown of H2AX [16].
In addition, quiescence is associated with organ homeostasis, as
demonstrated in normal cells in the liver, spleen and pancreas in vivo
[16]. By contrast, senescent cells express some H2AX [16] and contain
γH2AX foci, which are usually seen in cells in aging organs and those
in a precancerous state [18]. Consistent with these observations in
vivo, similar findings were made in mouse embryonic fibroblasts
(MEFs) in vitro. Whereas H2AX is largely downregulated in quiescent
MEFs, γH2AX foci form when MEFs become senescent and are
subjected to genomic destabilization [16]. Thus, H2AX/γH2AX
expression is strongly associated with the establishment of cellular
states, i.e., quiescence is established in cells with marked
downregulation of H2AX and senescence is established in cells with
γH2AX foci.

Importantly, ARF and p53 regulate establishment of the H2AX-
downregulated quiescent state [19]. Consequently, this state is
abrogated in cells with mutations in ARF or p53, such as cancer cells
and immortalized MEFs, in which H2AX expression and growth
activity are recovered [19]. Notably, many quiescent cells with
downregulated H2AX are protected against transformation. These
observations illustrate the importance of the H2AX-diminished
cellular state for the protection of cells from the transformation.
However, it remains unclear how ARF and p53 regulate the
establishment of this state.

Quiescent Cells are Vulnerable to Replication Stress-
Associated DSBs

Quiescent cells can still repair DSBs directly caused by γ-rays via
upregulation of H2AX [17], but are vulnerable to replication stress-
associated DSBs [20,21]. Replication stress-associated DSBs generally
accumulate in quiescent cells exposed to exogenous growth stimuli,
and these cells become senescent and often display genomic instability.
In addition, senescent MEFs displaying genomic instability further
lead to the generation of immortalized MEFs that are mutated in the
ARF/p53 module [16,20]. These findings are analogous to cancer
development, as cancer development is associated with aging and
genomic instability. These results indicate that responses to replication
stress-associated DSBs and DSBs directly caused by γ-rays clearly
differ; however, the cause of this difference is unknown.

Conclusion
H2AX downregulation is associated with establishment of cellular

quiescence, which contributes to homeostasis in many organs. This
state is regulated by ARF and p53, and is abrogated by mutation of the
ARF/p53 module. Accumulating knowledge illustrates the importance
of establishment of the H2AX-downregulated state and maintenance
of genome stability in this state. Cells with downregulated H2AX can
still repair DSBs directly caused by γ-rays, but are vulnerable to
replication stress-associated DSBs caused by continuous exposure to
growth stimuli. However, these findings raise a number of further
questions. First, what underlies the difference in repair efficiency
between DSBs directly caused by γ-rays and DSBs caused by
replication stress? Second, how do ARF and p53 regulate establishment
of the H2AX-downregulated state? Given that cancers widely develop
together with genomic destabilization and mutations in the ARF/p53
module, investigation of these issues may help to prevent cancer.
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