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Introduction
Crop production systems are highly dependent on soil water 

availability. Soil moisture is a parameter in the water cycle that has been 
identified as the link between rainfall and crop growth [1,2]. Accurate 
ground-based measurements of soil moisture percentage over large 
regions are difficult, labor intensive, expensive, and time consuming. The 
process is also challenging, especially in the selection of representative 
field sites whose soil moisture measurements would accurately represent 
the region irrespective of the differences in soil properties, topography 
and land cover [3,4]. This difficulty in obtaining large scale soil moisture 
measurements through traditional ground-based sampling networks, 
has led to several studies aimed at the utilization of remote sensing 
techniques for large scale soil measurements [2,3,5,6].

Satellite imagery captures soil surface and vegetation characteristics 
which are both affected by soil moisture. This forms the basis of using 
remote sensing to estimate soil moisture in various studies. Some 
studies have used active or passive microwave data to directly estimate 
volumetric soil water content in the surface soil layer (0-10 cm) [7-9] 
while others use indices derived from optical and/or thermal data to 
indirectly infer soil moisture status based on changes in bio-physical 
factors (e.g., vegetation cover, surface energy balance) affected by soil 
water availability [10-12]. Results from various studies all show the 
great capacity of thermal and/or optical derived vegetation indices in 
monitoring both surface and root zone soil moisture. Over the years, 
different vegetation indices have been applied in estimating soil moisture 
and vegetation response to its spatial and temporal variations [2,13-15]. 
To date, there is limited work done to investigate the applicability of 
the Landsat-based Moisture Stress Index in estimating soil moisture at 
different soil depths.

The main objective of this study was to investigate the relationship 
between the Moisture Stress Index (MSI) and soil moisture percentages 
at selected Soil Climate Analysis Network (SCAN) sites in Alabama. 
Specifically, the study aimed to use in situ SCAN soil moisture 
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Abstract
The global agronomy community needs quick and frequent information on soil moisture variability and spatial trends 

in order to maximize crop production to meet growing food demands in a changing climate. However, in situ soil moisture 
measurement is expensive and labor intensive. Remote sensing based biophysical and predictive regression modeling 
approach have the potential for efficiently estimating soil moisture content over large areas. The study investigates the 
use of Moisture Stress Index (MSI) to estimate soil moisture variability in Alabama. In situ data were obtained from Soil 
Climate Analysis Network (SCAN) sites in Alabama and MSI developed from LANDSAT 8 OLI and LANDSAT 5 TM data. 
Pearson product moment correlation analysis showed that MSI strongly correlates with 16-day average growing season 
soil moisture measurements, with negative correlations of -0.519, -0.482 and -0.895 at 5, 10, and 20 cm soil depths 
respectively. The correlations of MSI and growing season moisture were low at sites where soil moisture was extremely 
low (<-0.3 at all depths). Simple linear regression model constructed for soil moisture at 20 cm depth (R²=0.79, p<0.05) 
correlated well with MSI values and was successfully used to estimate soil moisture percentage within a standard error 
of ± 3. Resulting MSI products were used to successfully produce the spatial distribution of soil moisture percentage 
at 20 cm depth. The study concludes that MSI is a good indicator of soil moisture conditions, and could be efficiently 
utilized in areas where in situ soil moisture data are unavailable.
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measurements to evaluate the derived  LANDSAT moisture stress index 
in the estimation of soil moisture at different depths during the growing 
season and test the models’ predictive ability at distant or unmonitored 
sites.  This approach could be used to quickly determine soil moisture 
for large and out-of-reach regions. Findings from this study are likely to 
further enhace our understanding and applicability of remote sensing 
techniques in the estimation of spatial and temporal variations of soil 
moisture content. 

Study Area 
The study area is limited to selected Alabama counties: Limestone, 

Autauga, Macon, Sumter, Pickens and Madison (Figure 1). Soil Climate 
Analysis Network (http://www.wcc.nrcs.usda.gov/scan/) sites include, 
Tuskegee (Macon County), Morris (Macon County), Livingstone-UWA 
(Sumter County), Dee River Ranch (Pickens County), Wtars (Madison 
County), AAMU-JTG (Madison County). Although soils in Alabama 
belong to the ultisols soil group, differences in soil textures exist among 
locations. Sites selected cover a range of these textures, including loams, 
sandy loams, silt loams and, sandy clay loams [16]. 

Data
Soil moisture percent

Neutron probe measurements of Soil Moisture Percent (SMP) were 
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obtained from the United States Department of Agriculture–Natural 
Resources Conservation Service (USDA-NRCS) SCAN website. Daily 
SMP at depths of 5, 10, and 20 cm were downloaded from the site.

LANDSAT satellite data
Landsat 5 Thematic Mapper (TM and Landsat 8 Operational Land 

Imager (OLI) satellite data was downloaded from the USGS Earth 
Explorer website (Table 1). Landsat 5 TM consists of seven spectral 
bands with a spatial resolution of 30 meters for bands 1 to 5 and 7 with 
band 6 (thermal infrared) having a 120 meters spatial resolution which 
is resampled to 30 meter pixels. Landsat 8 OLI & Thermal Infrared 
Sensor (TIRS) consists of nine spectral bands with a spatial resolution 
of 30 meters for bands 1 to 7 and 9, 15 meters for panchromatic band 
8 and 100 meters for thermal bands 10 and 11. Table 1 shows the list of 
satellite data and dates for the research counties. The Images from 1985-
2000 were obtained from Landsat 5 TM and those from 2013-2015 were 
obtained from Landsat 8 OLI.

Methods
Moisture stress index

Moisture Stress Index is used for canopy stress analysis, productivity 
prediction and biophysical modeling. It was proposed by Hunt, et al. [17] 
who first used the index to detect changes in leaf water content using the 
near- and middle infrared reflection ratio. As the leaf water content in 
vegetation canopies increases, the absorption around the 1599 nm region 
of the electromagnetic spectrum increases with absorption at 819 nm 
remaining nearly unaffected by changing water content. Interpretation 
of the MSI is inverted relative to other water vegetation indices; thus, 
higher values of the index indicate greater plant water stress and in 
inference, less soil moisture content. The values of this index range from 
0 to more than 3 with the common range for green vegetation being 0.2 
to 2 [17]. Because the index detects leaf water content, satellite images 

used in the study were downloaded for the growing season of each year 
(April-September). MSI was calculated for each of the satellite images 
using the near-infrared band 4 and the mid-infrared band 5 spectral 
bands of Landsat images as shown in equation 1. 

MSI=MidIR (band 5)/NIR (band 4)		                                     (1)

GIS analysis was used to extract MSI values corresponding to the 
selected moisture probe points located within the different counties and 
to pair them with the corresponding SMP measured at the probe sites at 
depths of 5, 10, and 20 cm. 

Statistical analysis and model development

Pearson product moment correlation: Statistical analysis was 
carried out using R language version 3. The data were analyzed for 
correlation using the Pearson Product Moment Correlation [18,19]. 
Correlation coefficients (r) were calculated between MSI and soil 
moisture at in-situ sites, for three depths (5 cm, 10 cm and 20 cm) during 
the growing season.

Regression and validation: Based on the correlation results, the 
independent variables (moisture percent at different depths) with the 
highest correlation (>± 0.7) were selected to develop the regression 
models. A regression model was then developed for the 20 cm soil 
moisture depth, which had the strongest correlation with MSI values. 
The hypothesis was that SMP~MSI regression model developed at 
SCAN sites could be used to estimate soil moisture for unmonitored 
areas using MSI. Simple linear regression was employed to test this 
hypothesis and a regression model using MSI values as the independent 
variable and 16-day average soil moisture (soil moisture values for 15 
days before plus the day the satellite image was taken) as the dependent 
variable at the selected SCAN sites. 10 K-Fold cross-validation technique 
was used for model validation to assess its predictive ability. Statistical 
findings are shown and discussed in results section. The resultant maps 
of soil moisture variability for Limestone and Autauga Counties are also 

 
Figure 1: Study counties within the State of Alabama. In situ soil moisture SCAN 
sites were located in Madison, Pickens, Sumter and Macon Counties.

Site Path/Row Date   Site Path/Row Date

Macon 
County 19/38 16-Oct-15 Pickens 21/37 22-Sep-13

19/38 14-Sep-15 Madison 21/36 07-May-15

20/37 08-Jan-15 21/36 21-Apr-15

20/37 07-Dec-14 21/36 26-May-13

19/38 14-Nov-14 Limestone 
County 21/36 05-Jul-90

19/38 22-May-14 21/36 29-Jul-93

19/38 06-May-14 21/36 19-Jul-95

19/38 27-Aug-15 21/36 30-Jul-99

Sumter 
County 21/37 14-Jan-14 Autauga County 20/37 14-Jun-85

21/37 21-Apr-15 20/37 22-Jun-88

21/37 20-May-14 20/37 12-Jun-90

21/37 04-May-14 20/37 02-Jun-98

  21/37 22-Sep-13     20/37 07-Jun-00

Table 1: Landsat images used in the study.
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SCAN Probe sites MSI
Soil Moisture Percent 

No. Date 5 cm 10 cm 20 cm

1 09/14/2015 Tuskegee 0.8591 7.40 11.6 10.8

2 05/06/2014 Tuskegee 0.9078 15.7 20.5 19.4

3 05/22/2014 Tuskegee 0.8796 21.4 24.9 20.5

4 05/26/2013 Tuskegee 0.8639 8.80 12.5 13.7

5 04/30/2015 Tuskegee 0.9247 11.9 17.0 16.1

6 08/04/2015 Tuskegee 0.8725 7.70 12.0 12.9

7 07/28/2015 Tuskegee 0.7616 9.10 13.3 13.6

8 09/14/2015 Morris 0.6959 10.9 11.4 30.2

9 05/06/2014 Morris 0.6571 14.6 17.4 37.4

10 05/22/2014 Morris 0.6272 16.0 16.9 36.0

11 08/04/2015 Morris 0.6274 10.5 11.5 30.9

12 07/28/2015 Morris 0.6332 10.9 11.4 31.7

13 05/22/2014 Morris 0.6272 16.0 16.9 36.0

14 05/26/2013 Morris 0.6475 8.90 10.9 36.5

15 08/27/2015 Sumter (Livingstone -UWA) 0.6540 34.6 36.3 33.8

16 04/21/2015 Sumter (Livingstone -UWA) 0.6314 39.0 39.5 38.8

17 05/20/2014 Sumter (Livingstone -UWA) 0.6089 37.3 39.0 36.8

18 05/04/2014 Sumter (Livingstone -UWA) 0.6010 39.6 40.1 39.7

19 09/22/2013 Pickens (Dee River Ranch) 0.6749 29.9 - 30.7

20 09/22/2013 Sumter (Livingstone -UWA) 0.6749 29.9 - 30.7

21 05/07/2015 Madison (Wtars) 0.6444 29.5 34.5 28.4

22 05/07/2015 Madison (AAMU-JTG) 0.4513 33.0 36.4 38.5

23 04/21/2015 Madison (Wtars) 0.7033 38.5 38.6 33.4

24 04/21/2015 Madison (AAMU-JTG) 0.5795 39.9 40.0 40.1

25 05/26/2013 Madison (Wtars) 0.7206 32.2 37.3 30.9

26 05/26/2013 Madison (AAMU-JTG) 0.4730 27.5 35.8 54.1

Table 2: MSI and corresponding SMP at different depths for selected SCAN probe sites.

*Small symbols show cross-validation predicted values 
Figure 2: Predicted cross-validation values from the 10 K-Fold cross validation analysis.
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presented in the results section. 

Results
Soil moisture-msi correlation 

The growing season for the study area is April to September, and 
this is the period when the MSI has the highest correlation with soil 
moisture. The MSI values and corresponding SMP values are shown 
in Table 2.

Correlation coefficients between MSI values and in situ 16-day 
average soil moisture during the growing season are shown in Table 
3. The data indicate that MSI is sensitive to soil moisture fluctuations, 
increasing in value with decreases in soil moisture as evidenced by 
the strong negative correlations (P<0.05) at the various depths. The 
strongest correlation of MSI and soil moisture (r=-0.895) occurred at 
the 20 cm soil depth. These strong correlations suggest that growing 
season MSI not only reflects the response of various vegetation to 
soil moisture variation, but also can be used in the estimation of soil 
moisture variation. Such strong correlations have been observed 
between other vegetation indices and soil moisture [5,15]. As a result, 
growing season MSI and soil moisture data at 20 cm were used for the 
regression model to estimate soil moisture.

Linear model and validation
After verifying the MSI response to soil moisture variability, a linear 

model was developed using the l m function in R (Table 4) where, 
C=aMSI+c

MSI had the strongest correlation with SMP at 20 cm (-0.895), 
therefore these were the variables used in the linear model. Table 4 
shows the simple linear regression model components and statistics. 
The R² indicates that approximately 80% of the variation in SMP can be 
explained by MSI which for this type of data would indicate that MSI 
has at least a modestly high ability to predict SMP at 20 cm. However, 
this ability diminishes with increasing MSI values (decreasing water 
content in leaves). Such a weakness could be overcome by using SMP 
values obtained at deeper depths which are less transient and may have 
higher correlation with MSI values. 

The results for the 10 K-fold cross validation using the cv.lm 
function (R library DAAG) are summarized in table 5. The function 
divided the data into k subsets and each time one of the k subsets 
was used as the test set, the remaining k subsets were put together to 
form the training set. This was repeated 10 times to get the 10 folds. 
To estimate the predictive error of the model, the mean square values 
from each of the folds in the analysis were averaged to produce a single 
estimation. 

Standard error of estima
    247.te 3.08

2 6
52

 
Mean Square of all folds

number of observations
= = =∑

The model (based on in situ soil moisture) has a predictive error 
within ± 3.08 (units), if used to predict the soil moisture percent for 
unmonitored sites or areas without soil measurement data. Figure 2, 
shows all the 10 folds in the cross validation analysis. 

Research results suggests that growing season MSI could serve as 
a reliable proxy for soil moisture estimation at 20 cm depth. However, 
increasing dryness seems to introduce small errors into the estimation 
i.e. ± 3.08 standard error of the estimate. Figures 3 and 4 show MSI 
variability maps derived from satellite images of Limestone and Autauga 
counties. Based on the analysis of MSI and SMP values for SCAN probe 
sites, a location with an MSI less than 0.2 was classified as very wet and 
regions with an MSI greater than 2.2 were classified as dry based [17].

Conclusion
MSI, a remotely sensed vegetation index, was used in large scale 

soil moisture estimation in selected counties in Alabama. The index 
captures changes in leaf water content using the near- and middle 
infrared reflection ratio. In situ SCAN SMP measurements from 
different depths, were taken and related to this derived moisture 
index. In this study, index dependency on soil type or climate were 

SMP at 5 cm SMP at 10 cm SMP at 20 cm
MSI -0.519 -0.482 -0.895

Table 3: Correlations between MSI and SMP at different soil depths.

Slope(a) Intercept(c) p-value  R²
  -75.103      82.062 7.115e-10 0.8004

Table 4: Simple linear model for predicting SMP (C) at 20cm depth from MSI.

Fold No. Observation no. for values in Test Set Mean Square
1 8 & 16 17.7
2 19, 25 & 26 31.2
3 6, 20 & 21 10.6
4 1,5 &24 27.6
5 9,10 & 23 54.3
6 13,17 & 22 48.9
7 3,11 & 12 13.5
8 2 & 7 30.3
9 4 & 15 0.52

10 14 & 18 12.9

*see table 2 for values corresponding to the observation numbers
Table 5: Data and results from the 10 K- fold cross validation.
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0 10 205 Kilometers

±
MSI and Soil Moisture Classes 

au00msi_clc.img
<VALUE>

< 0.2       Very wet

0.2 - 0.7  Very moist

0.7 - 1.2  Moist

1.2 - 1.7  Slightly moist

au00msi_clc.img
<VALUE>

< 0.2       Very wet

0.2 - 0.7  Very moist

0.7 - 1.2  Moist

1.2 - 1.7  Slightly moist

1.7 - 2.2  Slightly dry

> 2.2       Dry

Figure 3: Soil moisture maps for Limestone County, Alabama for month of 
June for the years 1990 (a), 1993(b), 1995 (c) and, 1998 (d), created using 
Moisture Stress Index (MSI).
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MSI and Soil Moisture Classes 
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±
0 10 205 Kilometers

au00msi_clc.img
<VALUE>

< 0.2    Very wet

0.2 - 0.7  Very moist

0.7 - 1.2  Moist

1.2 - 1.7 Slightly moist

au00msi_clc.img
<VALUE>

< 0.2 Very wet

0.2 - 0.7 Very moist

0.7 - 1.2 Moist

1.2 - 1.7  Slightly moist

1.7 - 2.2  Slightly dry

> 2.2   Dry

Figure 4: Soil moisture maps for Autauga County, Alabama for month of July 
for the years 1985 (a), 1990(b), 1998 (c) and, 2000 (d), created using Moisture 
Stress Index (MSI).

not investigated. The index showed strong correlation with in situ 
soil moisture percent measured at 20 cm depth. Consequent linear 
regression model developed showed that MSI had at least a modestly 
high ability to predict SMP (R2=0.8). However, the model revealed 
that this ability would decline with increasing MSI values (indicative 
of increasing dryness). This weakness highlights the sensitivity of the 
model to transient soil moisture content at shallow depths.

The preliminary analysis of model performance in unmonitored 
sites, suggest that the MSI methodology is robust for estimation of soil 
moisture over larger areas and that it may be insensitive to soil type, 
at least in Alabama. Further research is needed to assess the strength 
of the MSI-soil moisture correlation at depths greater than 20 cm and 
application efficiency of MSI in soil moisture estimation of arid/dry 
regions. 
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